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The Planck mission, designed for making measurements of the cosmic microwave background (CMB)
radiation with unprecedented accuracy and angular resolution, is expected to release its entire data in the
near future. In this paper, we provide model-independent forecasts for the TT, EE, and TE angular power
spectra for the Planck mission using synthetic data based on the best-fit Lambda cold dark matter (ΛCDM)
model. The nonparametric function estimation methodology we use here is based on the agnostic viewpoint
of allowing the data to speak for themselves rather than letting the models decide what is inferred from the
data. Our analysis indicates that the three Planck angular power spectra will be determined sufficiently well
for 2 ≤ l≲ lmax, where lmax ¼ 2500ðTTÞ, 1377ðEEÞ, and 1727ðTEÞ respectively. A key signature of
reionization, namely, a bump at low values of l, is evident in our forecasts for the EE and TE power spectra.
Nonparametric confidence bands in the phase shift (ϕm) versus acoustic scale (lA) plane, corresponding to
the first eight peaks in the TT power spectrum, show a confluence region for 300≲ lA ≲ 305 which is in
good agreement with the estimate lA ¼ 300 based on the best-fit ΛCDM model. From our results, we
expect that the final Planck data should lead to accurate model-independent estimates of CMB angular
power spectra using our nonparametric regression formalism.
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I. INTRODUCTION

Observations of the microwave sky reveal that the
temperature of the cosmic microwave background
(CMB) radiation is not exactly the same in all directions.
These small fluctuations in temperature are imprinted
on the entire sky, implying that the CMB is anisotropic.
These primordial anisotropies were first discovered in
1992 by the cosmic background explorer (COBE). This
was followed by a remarkable series of ground-based
and balloon-borne experiments, and more recently by the
Wilkinson microwave anisotropy probe (WMAP). These
fluctuations are believed to have been generated within
10−35 seconds of the big bang. CMB anisotropies are
therefore a rich source of information about the early
universe, and have revolutionized the way we understand
our Universe. A study of CMB anisotropies also helps in
probing the fundamental physics at energy scales much
higher in magnitude compared to those accessible to

particle accelerators. CMB anisotropies are sensitive to
classical cosmology parameters such as expansion rate,
curvature, cosmological constant, matter content, radiation
content, and baryon fraction, and provide insights for
modeling structure formation in the Universe [1]. For
example, measurements of the CMB anisotropies with
ever-increasing precision have made it possible to establish
a standard cosmological model that asserts that the Universe
is spatially nearly flat [2].
The CMB contains an additional wealth of information

about the Universe through its (linear) polarization. The
CMB has acquired linear polarization through Thomson
scattering during either decoupling or reionization, and
sourced by the quadrupole anisotropy in the radiation
distribution at that time [3,4]. The dependence of CMB
polarization on cosmological parameters differs from that
of temperature anisotropies. As such, it helps break
degeneracies and constrain cosmological parameters better.
Accurate measurements of CMB polarization will therefore
enable us to affirm the validity and consistency of different
cosmological models [5–7].
The Planck mission [8] is a space-based full-sky probe

for third-generation CMB experiments designed to make
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extensive measurements of CMB polarization. Indeed, one
of the main objectives of this mission is to measure
primordial fluctuations in the CMB with an accuracy
prescribed by the fundamental astrophysical limits, through
improvements in sensitivity and angular resolution, and
through better control over noise and confounding
foregrounds. The higher angular resolution of Planck
implies that higher-order peaks in the CMB angular spectra
can be determined with better precision, which in turn
translates to determination of cosmological parameters
(such as baryon and dark matter densities) with improve-
ment in statistical precision by an order of magnitude.
Furthermore, the Planck mission is designed to make
extensive measurements of the E-mode polarization spec-
trum over multipoles up to l ≈ 1500 with unprecedented
precision, together with good control over polarized fore-
ground noise. These measurements are therefore expected
to provide insights into the physics of the early universe,
epoch of recombination, structure formation, allowable
modes of primordial fluctuations (adiabatic versus isocur-
vature modes), reionization history of the Universe, etc.,
and help in establishing constraints on the primordial power
spectrum. The Planck mission will also help constrain the
fundamental physics at high energies which are impossible
to probe through terrestrial experiments [8].
In our previous work [9], we estimated the CMB TT

power spectrum for four phased WMAP data releases using
a nonparametric function estimation methodology [10,11].
This methodology does not impose any specific form or
model on the power spectrum. It determines the best fit by
optimizing a measure of smoothness that depends only on
characteristics of the data. This ensures that the fit and the
subsequent analysis is approximately model independent
for sufficiently large data sizes. Further, this methodology
quantifies uncertainties in the fit in the form of a high-
dimensional ellipsoidal confidence set. This confidence set
is centered at the fit, and captures the true but unknown
power spectrum with a prespecified probability. This
confidence set is the prime inferential object of this
methodology, and allows addressing complex inferential
questions about the true but unknown power spectrum
meaningfully within a unified framework.
The Planck mission recently released a partial TT data

set, and is expected to release its final and entire CMB
temperature and E-mode polarization data sets in the near
future. In this paper, we therefore attempt to make model-
independent forecasts for the three CMB power spectra
using synthetic Planck-like data conforming to the spec-
ifications and characteristics of the Planck mission. These
synthetic data are based on the assumption that the best-fit
ΛCDM model [12] is the true model of the Universe.
In what follows, Sec. II briefly describes the three CMB

angular power spectra studied here. This is followed by a
description (Sec. III) of the synthetic data used in this work,
our results (Sec. IV), and conclusions (Sec. V).

II. TEMPERATURE AND POLARIZATION
POWER SPECTRA

The polarization of radiation is commonly characterized
in terms of the Stokes parameters I, Q, U and V [13]. It is
well known that the CMB cannot have circular polarization,
so we only consider linear polarization. The parameters Q
and U which describe linear polarization constitute a
rank-2 symmetric trace-free tensorPab.Any two-dimensional
symmetric tensor can be represented in the form of two
scalar fields. Such factorization is unique, and is similar
to the decomposition of a vector field into a gradient and a
divergence-freecomponent[14].Conventionally,Pab is there-
fore expressed in terms of its electric (i.e., gradient) and
magnetic (i.e., curl) components, PE and PB respectively.
For the CMB, the PE and PB scalars are defined on a

sphere, and expanded in terms of spherical harmonics as

PEðθ;ϕÞ ¼
X
l≥2

X
jmj≤l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s
aElmYlmðθ;ϕÞ; (1)

PBðθ;ϕÞ ¼
X
l≥2

X
jmj≤l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s
aBlmYlmðθ;ϕÞ; (2)

which define the E- and B-mode multipoles aElm and aBlm
respectively. Any CMB measurement can be decomposed
into three maps (T, E and B respectively). Hence, a total of
six angular power spectra (TT, EE, BB, TE, TB, and EB)
can be obtained from these three components [15]. These
six power spectra are defined by expanding the T, E and B
maps in terms of spherical harmonics, resulting into the
following correlation structure:

haY�lmaY
0

l0m0 i ¼ CYY 0
l δll0δmm0 ; (3)

where Y, Y 0 are E, B or T. In the absence of parity violation
and assuming Gaussian fluctuations, temperature and
polarization anisotropies of the CMB are described by
the CTT

l , CEE
l , CBB

l , CTE
l power spectra completely [4,5,14].

Since B-mode polarization is not expected to be detected
by the Planck mission accurately [8], we focus only on the
CTT
l , CEE

l and CTE
l power spectra.

The standard deviation of the CTT
l , CEE

l and CTE
l power

spectra is approximately given by [8,16]

ΔCTT
l ≃ 2

ð2lþ 1Þfsky
ðCTT

l þ ω−1
T W−2

l Þ2 (4)

ΔCEE
l ≃ 2

ð2lþ 1Þfsky
ðCEE

l þ ω−1
P W−2

l Þ2 (5)
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ΔCTE
l ≃ 2

ð2lþ 1Þfsky
ððCEE

l þ ω−1
P W−2

l Þ

× ðCTT
l þ ω−1

T W−2
l Þ þ ðCTE

l Þ2Þ; (6)

where ωT ≡ ðσp;TθFWHMÞ−2 and ωP ≡ ðσp;PθFWHMÞ−2 are
the weights per solid angle for temperature and polariza-
tion, and fsky is the fraction of observed sky in the
experiment. The σp;T and σp;P are noise standard deviations
per resolution element (θFWHM × θFWHM). The window
function for a Gaussian beam is

Wl ¼ exp

�
− lðlþ 1Þ

2l2beam

�
; (7)

where lbeam ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
=θFWHM.

The importance of decomposing the Pab tensor in terms
of the E and B modes comes from the fact that linear scalar
perturbations do not generate any B-mode polarization [4].
The tensor mode contributes to both E as well as B modes,
whereas the vector mode contributes only to the B-mode
polarization. Therefore, the E part of the decomposition
stems from the scalar and tensor modes, whereas the B part
originates in the vector and tensor modes [4,8,14].
Cosmological relevance of these polarization modes is

as follows. In contrast to the temperature anisotropies
which originate in photon density fluctuations at the last
scattering, the E mode follows the velocity of the cosmo-
logical plasma at decoupling. The E mode therefore
contains greater information about cosmological parame-
ters such as baryon and cold dark matter densities [6,14].
Polarization power spectra have an oscillatory structure
which is analogous to that of the TT power spectrum. For
example, peaks in the EE power spectrum are out of phase
with those in the TT power spectrum due to anisotropy
generated at the last scattering. The TE power spectrum,
which has a higher amplitude compared to the EE power
spectrum, is a measure of the correlations (positive or
negative) between density and velocity fluctuations
[14,17]. Further, the phase difference between acoustic
peaks in the TT, EE and TE power spectra can be used as a
model-independent check for the physics of acoustic
oscillations [14].
Adiabatic and isocurvature perturbations also have

different effects on the phase of the CMB polarization
spectra. Predicted polarization power spectra for isocurva-
ture perturbations show out-of-phase peaks and dips
compared to those for adiabatic perturbations. As a result,
power spectra from isocurvature perturbations appear to be
l-shifted versions of those for adiabatic perturbations [18].
A meaningful estimation of the polarization power spectra
can therefore be used to determine which of the two
scenarios is closer to truth.
An important cosmological phenomenon that affects

the polarization spectra is reionization. Reionization of
the Universe started when the first generation of stars

started producing a flux of photons. The resulting free
electrons started rescattering the CMB radiation. Although
only a small fraction of CMB photons got scattered this
way during the reionization era, the imprints of reionization
are expected to be seen as distortions in the polarization
power spectra at large angular scales of the order of 10 deg.
The height and location of the reionization bump [19–21]
expected at low multipoles (l≲ 20) has information related
to total optical depth and the reionization epoch redshift
[6,20]. Although the precision of reionization bump detec-
tion is limited by cosmic variance at low l [22], con-
straining it will help understand the reionization history
better. It will also help break degeneracies between several
cosmological parameters by constraining the optical depth
better [6,7].

III. SYNTHETIC DATA FOR THE
PLANCK MISSION

For forecasting CMB angular power spectra for the
Planck mission, we generate the synthetic Planck-like data
using the FuturCMB code [23]. FuturCMB generates a
simulated angular power spectrum using a user-provided
theoretical power spectrum Ctrue

l (which is assumed to be
the true spectrum) for frequency channels representing
Planck measurements, and generates the corresponding
noise power spectrum Nl conforming to the Planck char-
acteristics. This is done by generating a random realization
of the spherical harmonic coefficients alm, assumed to be
Gaussian random variables with mean zero and variance

VarðalmÞ ¼ Ctrue
l þ Nl: (8)

ForCtrue
l , we use spectra generated using CAMB [24] for the

best-fit ΛCDM cosmological parameters obtained from the
WMAP 7-yr data [12].We also limit FuturCMB to l ≤ 2500,
a range that corresponds to the three Planck frequency
channels (100, 142 and 217 GHz). Nl is the noise power
spectrum given by

Nl ¼ ω−1W−2
l ; (9)

where ω is ωT and ωP for temperature and polarization
respectively, and Wl is the window function for a Gaussian
beam [Eq. (7)]. The noise in the TE power spectrum is taken
to be zero because noise contributions from different maps
are uncorrelated [23]. FuturCMB then calculates the power
spectra data Cmap

l as

Cmap
l ¼ 1

2ðlþ 1Þ
Xþl

m¼−l
jalmj2: (10)

Equation (10) is an unbiased estimator of VarðalmÞ [Eq. (8)].
Its expected value is therefore equal to Ctrue

l þ Nl. The noise
spectra are expected to dominate over the true spectrum for
sufficiently high values of l. This is seen in Figs. 1–3, where
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the black points represent the FuturCMB output Cmap
l of the

TT, EE and TE spectra: The upward trends in the tail of TT
and EE spectra are the result of noise dominating the data at
high ls. The TE power spectrum, on the other hand, does not
show any such upward trend because the noise in the TE
spectrum is assumed zero. To obtain synthetic TT and EE
data, we therefore subtract the corresponding noise spectra
from the Cmap

l output of FutureCMB (Figs. 1–2, red points).
The covariance matrix of the simulated angular power
spectra is taken to be a diagonal matrix with diagonal
elements defined in Eqs. (4), (5) and (6) for TT, EE, and TE
respectively.

IV. RESULTS AND DISCUSSION

A. Nonparametric fits to synthetic Planck data

For estimating the power spectra from synthetic Planck
data, we use the nonparametric regression method
described in [9]. While our synthetic data are generated
under the assumption that the ΛCDM model as estimated
from the WMAP 7-yr data is the true model of the
Universe, this formalism for nonparametric regression
and inference itself does not make any assumptions about
the shape of the true regression function underlying
the data; it is asymptotically model independent. Further,
while the correlations in our synthetic data are zero by
construction, this regression formalism is capable of
incorporating a nondiagonal covariance matrix describing
correlated noise.
Under this formalism, the nonparametric fit can be

characterized by its effective degrees of freedom (EDoF),
which can be thought of as the equivalent of the number of
parameters in a parametric regression problem. Using this
methodology, we obtain nonparametric fits to the synthetic
TT,EE and TE data by appropriately constraining the EDoF
of the fits.
Figures 4, 5 and 6 show nonparametric fits (red curves)

to the TT, EE, and TE data respectively, which are in good
agreement with the underlying ΛCDM spectra (Ctrue

l , black
curves) used to generate the synthetic data. This shows that
this nonparametric regression methodology, which does not
assume any specific form of the true (but generally
unknown) regression function, can recover the underlying
true spectrum with high accuracy especially where noise
levels are not too high. Additional details about these
nonparametric fits can be found in Appendices A and B.

B. How well will the final Planck spectra
be determined by data alone?

To see how noise in the data affects local uncertainties in
a fitted spectrum, we compute approximate 95% confi-
dence intervals for each fitted Cl using 5000 randomly
sampled spectra from the corresponding confidence set.
The ratio of this confidence interval to the absolute value of
the fitted jClj, assumed to be nonzero, is a relative measure
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FIG. 1 (color online). A realization of simulated TT power
spectrum data for the Planck mission, generated using FuturCMB
[23]. Black points: data including noise; red points: simulated
data after subtracting noise.
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FIG. 2 (color online). A realization of simulated EE power
spectrum data for the Planck mission, generated using FuturCMB
[23]. Black points: data including noise; red points: simulated
data after subtracting noise.
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FIG. 3. A realization of simulated TE power spectrum data for
the Planck mission, generated using FuturCMB [23]. FuturCMB
assumes the noise to be zero for the TE data.
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of how well each fitted Cl is determined [9,11]: A value
≪ 1 implies that the fit is well determined by the data, and a
value ≳1 implies that the data contain very little informa-
tion about height of the power spectrum at that l. In Fig. 7,
we plot this relative error (95%) for all three spectra as a
function of the multipole index l. We see that, by this
criterion, the Planck power spectra are expected to be well
determined up to l ≈ 2462ðTTÞ, 1377ðEEÞ and 1727ðTEÞ.
Since the TE fit oscillates around zero (Fig. 6), this quantity
takes very high values at l’s where the TE spectrum has a
nearly zero value. This results in multiple spikes in Fig. 7
(green dash curve), but this does not imply that the fit is ill
determined at these l’s. Ignoring these spikes, we see that
the relative error in the TE fit is below unity up to l ≈ 1727,
which indicates the range over which this fit is expected to
be well determined by data alone.

C. Uncertainties on the locations and heights
of peaks and dips

Locations and heights of peaks and dips in the CMB
power spectra are governed by cosmological parameters.
Uncertainties in the location and height of a peak or a dip in
a fitted spectrum can thus help assess uncertainties in the
values of related parameter. Following the procedure out-
lined in [9], we sampled the 95% confidence set of each
fitted spectrum uniformly to generate spectral variations
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FIG. 4 (color online). TT nonparametric fits. Blue: full-freedom
fit (EDoF ≈ 72), red: restricted-freedom fit (EDoF ¼ 27), black:
best-fit ΛCDM spectrum, grey: simulated data realization.
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FIG. 5 (color online). EE nonparametric fits. Blue: full-
freedom fit (EDoF ≈ 190), red: restricted-freedom fit
(EDoF ¼ 24), black: best-fit ΛCDM spectrum, grey: simulated
data realization.
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FIG. 6 (color online). TE nonparametric fits. Blue: full-freedom
fit (EDoF ≈ 95), red: restricted-freedom fit (EDoF ¼ 40), black:
best-fit ΛCDM spectrum, grey: simulated data realization.
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FIG. 7 (color online). The results of a probe of the confidence
sets for the TT (red), EE (blue), and TE (green) nonparametric
restricted-freedom fits to the synthetic Planck data, to determine
how well the fits are expected to be determined by the data alone.
The quantity plotted for each data realization is the total vertical
variation at each l within the respective 95% (2σ) confidence set,
divided by the absolute value of the fit (assumed nonzero): Values
≪ 1 indicate that the fit is tightly determined by the data, whereas
values ≳1 indicate that the data contain very little information
about the height of the angular power spectrum at that l.
Disregarding the low-l region for the EE fit, and spikes for
the TE fit (which arise from nearly zero fitted Cl values), the
marked vertical lines indicate the approximate l value at which
each curve rises above 1.
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while ensuring that at least 5000 of these are acceptable
(see Appendix B for details). Figures 8, 9, 10, and show the
results of this exercise, together with tabulated values in
Tables I, II, and III respectively. The box around a peak or a
dip represents the largest horizontal and vertical variations
in the scatter; these represent the 95% confidence intervals
on the location and height of a peak or a dip.
For the TT fit, these boxes around peaks and dips are tiny

(Fig. 8), which is a reflection of the accuracy of the Planck
TT data. Such precise determination of peaks and dips
will clearly lead to more robust estimates of related

cosmological parameters than what is currently available.
The theoretical TT power spectrum (Fig. 4, black curve)
shows a small upturn at low l. This upturn is primarily the
result of the integrated Sachs-Wolf effect. In Fig. 8, this
upturn corresponds to the first dip in the spectral variations
sampled from the 95% confidence set.
Peaks and dips in the EE power spectrum show

reasonably low uncertainties up to l ≈ 1200 (Fig. 9).
Beyond this, the data contain high levels of noise, and
therefore all uncertainties become much larger. This is in
agreement with the behavior of the EE curve in Fig. 7 (blue
curve). We also expect a small bump in the EE power
spectrum which is related to the epoch of reionization. This
bump is indeed seen in full-freedom nonparametric EE fit
in Fig. 5. The restricted-freedom fit, however, does not
recover this bump except for a weak peak at low multipoles
(l ¼ 20). We believe this to be more a limitation of
methodology. The restricted-freedom fit may not be appro-
priate at very low multipoles since features at low multipole
will not be captured in a limited cosine expansion. The 95%
uncertainties of locations and heights of peaks and dips are
reported in Table II. The uncertainty boxes on peaks and
dips in the TE fit (Fig. 10) are reasonably small until
l ≈ 1800, again in agreement with the result depicted in
Fig. 7 (green dashed curve). The somewhat peculiar
uncertainty boxes on the last three peaks in the TE fit
are due to the fact that there are two spurious peaks at
l ¼ 1920 and l ¼ 2070 in the restricted-freedom fit (see
Appendix A) which are a result of the high noise levels at
high ls. At low multipoles, the TE fit also shows a bump
(Fig. 6) which is related to the epoch of reionization.
Although a similar bump in the EE fit is known to be more
informative [8], a determination of this peak in the TE
spectrum should also lead to useful information about
reionization.

FIG. 8 (color online). 95% confidence boxes the locations and
heights of peaks and dips in the TT fit. Black curve is the
restricted-freedom monotone fit to the synthetic Planck TT data
(grey points). The number of acceptable spectral variations
sampled from the 95% confidence set is 5000. These uncertain-
ties are tabulated in Table I.

FIG. 9 (color online). 95% confidence boxes the locations and
heights of peaks and dips in the EE fit. Black curve is the
restricted-freedom monotone fit to the synthetic Planck EE data
(grey points). The number of acceptable spectral variations
sampled from the 95% confidence set is 5000. These uncertain-
ties are tabulated in Table II.

FIG. 10 (color online). 95% confidence boxes the locations and
heights of peaks and dips in the TE fit. Black curve is the
restricted-freedom monotone fit to the synthetic Planck TE data
(grey points). The number of acceptable spectral variations
sampled from the 95% confidence set is 5000. These uncertain-
ties are tabulated in Table III.
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D. Are the acoustic peaks in the TT and EE spectra
out of phase with respected to each other?

From the fundamental physics of the CMB anisotropies,
we expect the acoustic peaks in the TT and EE power
spectra to be out phase with respect to each other. One way
of establishing this is by considering the ratio of peak
locations in the EE fit to the corresponding ones in the TT
fit, which should be ðmþ 0.5Þ=m for the mth peak [18]. In
Fig. 11, we depict the 95% confidence intervals on peak
locations in the TT power spectrum (blue) against the
corresponding intervals for the EE spectrum (red). Also
plotted are the peak location pairs corresponding to the
best-fit ΛCDM model (black dots), and points (green)
based on the approximate expectation ðmþ 0.5Þ=m. Since
the CMB power spectrum is a two-dimensional projection
of three-dimensional acoustic oscillation, the analytic

approximation (green dots) relating periodicity three-
dimensional wave number to a corresponding periodicity
in (two-dimensional wave number) multipoles, l works
only at large l. Not surprisingly, the deviation from
ðmþ 0.5Þ=m behavior is also seen in the theoretical
prediction. What is remarkable and relevant is that the
data recovers theoretical prediction of ΛCDM model with
adiabatic initial conditions for perturbations so well.

E. An estimate of the acoustic scale parameter lA
Table I lists the 95% confidence intervals on peak and

dip locations and heights for the TT power spectrum fit. As
a way of illustrating the role of these uncertainties in the
estimation of cosmological parameters, we consider, for TT
power spectrum, the following relationship lm ¼ lAðm −
ϕmÞ [25,26] between the location lm of the mth peak, the

TABLE I. 95% Confidence interval on several features of TT angular power spectrum.

Peak location Peak height Dip location Dip height

l1∶ð204; 234Þ h1∶ð5401:543; 5925:611Þ l1þ1
2
∶ð406; 421Þ h1þ1

2
∶ð1638:521; 1769:197Þ

l2∶ð525; 549Þ h2∶ð2527:018; 2691:862Þ l2þ1
2
∶ð666; 688Þ h1þ1

2
∶ð1689:753; 1793:608Þ

l3∶ð805; 827Þ h3∶ð2465:483; 2596:654Þ l3þ1
2
∶ð1009; 1028Þ h1þ1

2
∶ð969:1924; 1019:3422Þ

l4∶ð1120; 1141Þ h4∶ð1215:164; 1267:128Þ l4þ1
2
∶ð1301; 1325Þ h1þ1

2
∶ð663:6103; 695:9041Þ

l5∶ð1418; 1439Þ h5∶ð806:5287; 845:0737Þ l5þ1
2
∶ð1630; 1666Þ h1þ1

2
∶ð348:6765; 370:1998Þ

l6∶ð1714; 1761Þ h6∶ð387:0516; 412:0869Þ l6þ1
2
∶ð1922; 2007Þ h1þ1

2
∶ð199:8328; 225:3753Þ

l7∶ð1989; 2085Þ h7∶ð219:8173; 251:4042Þ l7þ1
2
∶ð2220; 2442Þ h1þ1

2
∶ð64:88648; 112:57429Þ

l8∶ð2282; 2498Þ h8∶ð71:91322; 141:91509Þ l8þ1
2
∶ð2394; 2500Þ h1þ1

2
∶ð15:27434; 111:02498Þ

TABLE II. 95% Confidence interval on several features of EE angular power spectrum.

Peak location Peak height Dip location Dip height

l1∶ð7; 26Þ h1∶ð−0.0025; 0.0235Þ l1þ1
2
∶ð17; 27Þ h1þ1

2
∶ð−0.0029; 0.0181Þ

l2∶ð133; 144Þ h2∶ð0.9234; 1.2542Þ l2þ1
2
∶ð193; 205Þ h2þ1

2
∶ð0.4620; 0.8600Þ

l3∶ð390; 401Þ h3∶ð20:4654; 23:2528Þ l3þ1
2
∶ð521; 532Þ h3þ1

2
∶ð5.4424; 7.5745Þ

l4∶ð681; 697Þ h4∶ð35:2102; 39:9650Þ l4þ1
2
∶ð825; 844Þ h4þ1

2
∶ð8.6629; 14:2180Þ

l5∶ð978; 1009Þ h5∶ð38:5544; 46:5531Þ l5þ1
2
∶ð1135; 1184Þ h5þ1

2
∶ð4.9459; 15:6909Þ

l6∶ð1258; 1360Þ h6∶ð24:2445; 40:3917Þ l6þ1
2
∶ð1401; 1668Þ h6þ1

2
∶ð−4.0435; 20:6010Þ

l7∶ð1442; 1802Þ h7∶ð7.3139; 44:8427Þ l7þ1
2
∶ð1461; 1969Þ h7þ1

2
∶ð−33:4637; 28:6720Þ

l8∶ð1626; 1999Þ h8∶ð−12:4126; 73:5849Þ l8þ1
2
∶ð1755; 2000Þ h8þ1

2
∶ð−46:4440; 65:6556Þ

TABLE III. 95% Confidence interval on several features of TE angular power spectrum.

Peak location Peak height Dip location Dip height

l1∶ð3; 38Þ h1∶ð0.6092; 2.5822Þ l1þ1
2
∶ð142; 158Þ h1þ1

2
∶ð−49:8581;−37:7906Þ

l2∶ð301; 316Þ h2∶ð113:1289; 136:2571Þ l2þ1
2
∶ð461; 477Þ h2þ1

2
∶ð−83:9852;−68:6596Þ

l3∶ð588; 605Þ h3∶ð26:2370; 44:0873Þ l3þ1
2
∶ð741; 758Þ h3þ1

2
∶ð−145:3450;−124:9381Þ

l4∶ð903; 923Þ h4∶ð56:4278; 76:1789Þ l4þ1
2
∶ð1061; 1086Þ h4þ1

2
∶ð−94:7879;−76:2354Þ

l5∶ð1199; 1243Þ h5∶ð4.2335; 23:1510Þ l5þ1
2
∶ð1353; 1400Þ h5þ1

2
∶ð−76:0768;−55:1005Þ

l6∶ð1511; 1579Þ h6∶ð1.9257; 25:1787Þ l6þ1
2
∶ð1650; 1750Þ h6þ1

2
∶ð−49:6416;−25:6796Þ

l7∶ð1772; 1954Þ h7∶ð−14:4294; 13:7468Þ l7þ1
2
∶ð1822; 2081Þ h7þ1

2
∶ð−42:0202;−2.8288Þ

l8∶ð1884; 2208Þ h8∶ð−20:8813; 37:7615Þ l8þ1
2
∶ð1959; 2282Þ h8þ1

2
∶ð−50:6428; 11:4636Þ

l9∶ð2023; 2354Þ h9∶ð−21:1805; 40:5083Þ l9þ1
2
∶ð2073; 2419Þ h9þ1

2
∶ð−83:8615; 10:2379Þ

l10∶ð2155; 2499Þ h10∶ð−48:9460; 75:1592Þ l10þ1
2
∶ð2257; 2500Þ h10þ1

2
∶ð−116:2237; 60:3390Þ
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acoustic scale lA, and the phase shift parameter ϕm. In this
formulation, the physically meaningful range of values for
ϕm is jϕmj < 1. If we substitute the end-points of the 95%
confidence interval for the mth peak location, then this
relationship results into hyperbolic confidence bands in the
lA-ϕm plane (Fig. 12). The intersection of these bands (for
the first 8 peaks in the TT fit) determine an estimated
confidence interval for the acoustic scale 300 ≤ lA ≤ 305

which is in agreement with the reported value lA ¼ 300 by
[27]. Similarly, Fig. 13 depicts ϕm versus lA for first 4
acoustic peaks in the EE fit. The intersection of bands
estimate acoustic scale in the range of 295 ≤ lA ≤ 300.
The corresponding ϕ values in both plots (ϕ ≈ 0.25 for TT
and ϕ ≈ 1.65 for EE) indicate TT and EE power spectra are
out of phase. In comparison with our previous estimate
200 ≤ lA ≤ 400 [9] based on the WMAP 7-yr data, the
estimate from Planck is expected to improve remarkably.
Furthermore, any additional information about the phase
shifts ϕm can lead to an even more refined estimate for
acoustic scale.

V. CONCLUSION

While a partial TT power spectrum data set has been
released by the Planck mission, the final TT and polari-
zation data are yet to be released. In this paper, we have
therefore attempted to gleam at what the final TT, EE and
TE power spectrum data from the Planck mission might
yield when they are released.
For the present analysis, we have used synthetic Planck-

like data sets based on the best-fit ΛCDM model and
conforming to the characteristics of the Planck mission. We
have analyzed these synthetic data using a nonparametric
regression and inference methodology which yields data-
driven, nearly model-independent estimates and inferences
for power spectra and cosmological parameters. This
methodology is agnostic in the sense that it does not
assume any particular cosmological model to be the truth,
and hence allows the data to speak for themselves as much
as possible.
Our nonparametric TT power spectrum fit has all the

peaks resolved well up to l ≤ 2500, and we see that the EE
and TE power spectra are reasonably well determined as
well. We expect the locations and heights of peak and dip in
the power spectra to be determined quite precisely, leading

FIG. 11 (color online). The 95% confidence intervals on peak
locations in the EE fit (red) plotted against the corresponding
confidence intervals in the TT fit (blue). Also plotted are the peak
location pairs corresponding to the best-fit ΛCDM model (black
dots), and points (green) based on the theoretical expectation
ðmþ 0.5Þ=m. All the plotted quantities are by and large con-
sistent with each other, indicating that the expected behavior of
out-of-phase peak locations is indeed vindicated by the data.
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FIG. 12 (color online). Confidence “bands” for the acoustic
scale lA and the shift ϕm for the mth peak, as derived from the
95% confidence intervals on the first eight peak locations of
estimated TT power spectrum.
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FIG. 13 (color online). Confidence “bands” for the acoustic
scale lA and the shift ϕm for the mth peak, as derived from the
95% confidence intervals on the first four acoustic peak locations
of estimated EE power spectrum.

AGHAMOUSA, ARJUNWADKAR, AND SOURADEEP PHYSICAL REVIEW D 89, 023509 (2014)

023509-8



to stronger constraints on cosmological parameters and
derived quantities such as the acoustic scale lA. Our results
further lead us to expect that the out-of-phase peaks in the
TT and EE spectra will reconfirm the fundamental physics
of acoustic oscillations far better.
We therefore conclude that the final Planck data, when

released, should lead to a far better understanding of the
reionization history of the Universe and help resolve the
issue of adiabatic versus isocurvature perturbations through
much tighter constraints on the power spectra and cosmo-
logical parameters, evenwith an agnostic,model-independent
approach to estimation and inference.

APPENDIX A: FULL-FREEDOM AND
RESTRICTED-FREEDOM
NONPARAMETRIC FITS

The full-freedom fits are obtained by minimizing the risk
function subject to monotonicity constraints on the shrink-
age parameters [9]. Such full-freedom fits can be quite
oscillatory especially where the noise levels in the data
are high. Despite this fit being a reasonable fit (in the sense
that it captures the essential trend in the data well), all
cosmological models expect far smoother angular power
spectra. To account for this, we minimize the risk again,
restricting the EDoF of the fit to a value less than that for
the full-freedom fit. We continue reducing the EDoF in this
way until we obtain an acceptably smooth fit. We call this
the restricted-freedom fit.
The full-freedom fit for the TT power spectrum is almost

smooth, but with tiny wiggles (Fig. 4, blue curve), and
corresponds to EDoF ≈ 72. We achieve a numerically
smooth fit for the TT power spectrum at EDoF ≈ 27
(Fig. 4, red curve). We see that this restricted-freedom
fit follows the full-freedom fit almost exactly, but without
the additional wiggles which resulted from noise in the
data. For the EE power spectrum, the full-freedom fit has
EDoF ≈ 189 (Fig. 5, blue curve). This fit is quite wiggly at
high multipoles, as can be expected from high noise levels
in data there. The Planck proposal [8] also expects the EE
power spectrum to have high noise at high multipoles, and
hence unable to resolve peaks beyond l≲ 1000. Therefore,
we have excluded the EE fit beyond l ¼ 2000 (Fig. 5) from
further analysis. The restricted-freedom smoother version

of the EE fit corresponds to EDoF ¼ 23:79 (Fig. 5, red
curve). We see again that the smooth fit follows the
full-freedom fit, but averages over the wiggles. For the
simulated TE data, we obtain the full-freedom fit at
EDoF ≈ 95 (Fig. 6, blue curve). The peaks are resolved
well up to l ≈ 2000. At higher multipoles, we see a wiggly
fit with false peaks due to high levels of noise. A smoother
restricted-freedom fit is obtained at EDoF ¼ 40 (Fig. 6, red
curve). Despite this additional smoothing, because of the
high noise at high multipoles, we see two false bumps at
l ¼ 1920, 2070, and a false peak at l ¼ 2304.

APPENDIX B: PROBING THE
CONFIDENCE SETS

A high-dimensional confidence set (for a prespecified
level of confidence, typically, 95%) around a fit is the prime
inferential object for this nonparametric methodology [9].
By probing the confidence set, we can determine uncer-
tainties on specific feature of a fit, validate different
cosmological models against the data, etc. For finding
uncertainties on the location and height of a peak or a dips
(Figs. 8, 9, and 10) we use the same methodology as was
used in [9]: We uniformly sample the confidence set of each
smooth fit, and record the peaks and dips of acceptable
spectra thus sampled. The most extreme variations in the
height or location define a confidence interval on the
respective estimates (represented in the figures as boxes).
Compared to [9], we change a few criteria for accepting
such sampled spectra to account for the greater angular
resolution of the Planck data: For the TT and TE fits, we
select spectra with exactly 8 and 10 peaks respectively. In
the case of the TE fit, this criterion includes a peak at low
multipoles (l ≤ 50) and a false peak at l ¼ 2304. For the
EE fit, we sample spectra with 8 peaks for l ≤ 2000,
together with the additional condition that there must be a
peak at low multipoles (l ≤ 50). The last peak in the EE
restricted-freedom fit consists of two tiny but close bumps
due to noise in the data. Such fine structure is not expected
here on theoretical grounds. Therefore, in case we find a
sampled spectrum with two tiny peaks around the location
of the eighth peak in the fit, but with separation less than 10
multipoles, we consider them as a single peak and record
their average location and height.
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