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Metallic clusters on a model surface: Quantum versus geometric effects
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We determine the structure and melting behavior of supported metallic clusters using an ab initio density-
functional-based treatment of intracluster interactions and an approximate treatment of the surface as an idealized
smooth plane yielding an effective Lennard-Jones interaction with the ions of the cluster. We apply this model to
determine the structure of sodium clusters containing from 4 to 22 atoms, treating the cluster-surface interaction
strength as a variable parameter. For a strong cluster-surface interaction, the clusters form two-dimensional
(2D) monolayer structures; comparisons with calculations of structure and dissociation energy performed with
a classical Gupta interatomic potential show clearly the role of quantum shell effects in the metallic binding in
this case, and evidence is presented that these shell effects correspond to those for a confined 2D electron gas.
The thermodynamics and melting behavior of a supported Na20 cluster is considered in detail using the model
for several cluster-surface interaction strengths. We find quantitative differences in the melting temperatures and
caloric curve from density-functional and Gupta treatments of the valence electrons. A clear dimensional effect
on the melting behavior is also demonstrated, with 2D structures showing melting temperatures above those of
the bulk or (at very strong cluster-surface interactions) no clear meltinglike transition.
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I. INTRODUCTION

Small particles and clusters can have markedly different
physical and chemical properties from those of the bulk
material because of the enhanced ratio of surface to volume
and quantum confinement effects.1 For example, the structure
and atomic coordination, as well as electronic and magnetic
properties, of small particles can all show new features.2 In
addition, the thermodynamic and melting behavior of clusters
can have peculiar properties. For instance, small clusters of
Sn and Ga were found to undergo a meltinglike transition at
temperatures higher than the melting point of the correspond-
ing bulk material,3,4 contradicting the standard paradigm that
a small particle should melt at a lower temperature than the
bulk because of the effect of the surface. This behavior was
explained in terms of a difference in the nature of the bonding
between cluster and bulk, with small clusters of Sn and Ga
both having a highly covalent character.5,6 Other experiments
showed that small clusters of Na with from 50 to 300 atoms did
undergo a meltinglike transition at temperatures lower than the
bulk melting point, but at temperatures that varied irregularly
with the size of the cluster, implying a competition between
geometric and quantum effects.7–11

Experimental12–15 and theoretical13,14,16,17 work has also
shown that the properties of clusters supported on a surface
can be modified by the interaction with the surface. However,
there is a lack of work on the thermodynamic properties and
melting behavior of supported clusters using first-principles,
density-functional-based electronic structure methods.

A recent motivation for studying theoretically the structural
and thermal properties of supported metallic clusters is
provided by the cluster-catalyzed growth process of carbon
nanotubes (CNTs).18,19 In this process, the CNT grows
from a small cluster, typically of a transition metal (or its
oxide), supported on a substrate. It is highly desirable to
be able to produce large quantities of high-quality CNTs

with controlled properties,18 but many aspects of the growth
process are poorly understood. For instance, the efficiency of
the growth process can depend markedly on the particular
combination of substrate and cluster material chosen, as well
as on other experimental parameters such as the tempera-
ture and pressure. Much recent theoretical work has been
devoted to the simulation of the cluster-catalyzed CNT growth
process.20–25

In this context, Ding et al.22 and Shibuta and Maruyama23

considered a simplified model in which the surface was
replaced by an idealized smooth plane interacting with the
cluster via a potential of Lennard-Jones type. Treating the
cluster-surface interaction (Lennard-Jones well depth) as a
variable parameter, they showed that the melting temperature
of clusters with several hundred atoms increased mono-
tonically as the strength of the cluster-surface interaction
increased. Using a similar model, Sarkar and Blundell26

considered smaller clusters of size 55 atoms and showed that
there were detailed changes in the structure of the cluster as
the cluster-surface interaction varied, accompanied by steps
in the melting temperatures. Also, Jiang et al.,25 in a study
of the thermodynamics of supported Fe-C clusters, have
employed a smooth plane interacting with the cluster via an
effective Morse potential, the parameters of which were fitted
to ab initio calculations.

Now, the above-mentioned calculations22,23,25,26 all use
classical molecular dynamics (MD)27 with parametric inter-
atomic potentials to simulate the thermodynamic properties of
the supported clusters. In this work, we retain the simplified
model of the surface, but employ instead an ab initio treatment
of the intracluster interactions, within density functional theory
(DFT),28 directly in both the thermodynamic simulations
and the global optimization procedure used to determine the
lowest-energy cluster structure at 0 K. The cluster-surface
interaction is treated as an effective classical external potential
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acting on the ions of the cluster. While DFT-based thermo-
dynamic simulations are orders of magnitude more expensive
than classical MD simulations, they are nevertheless feasible
and have been used with success in the past, for example, to
explain the peculiar melting behavior of free (unsupported)
Sn and Ga clusters.5,6 Also, first principles determinations of
the melting temperature of small Na clusters were made in
Refs. 29 and 30. To illustrate our general approach, in this
work we revisit Na clusters, with the aim of showing that the
model is capable of accounting for subtle quantum effects in
the metallic bonding.

The plan of the paper is as follows. In the next section
we describe in some detail our model and calculation pro-
cedures. Then, in Sec. III we consider the particular case
of a cluster-surface interaction that is sufficiently strong that
the clusters collapse into a monolayer, or two-dimensional
(2D), structure. This gives a particularly illuminating exam-
ple of the differences between a classical and a quantum
treatment of the valence electron gas. For this case, we
determine the lowest-energy structures for sizes 4 � N � 22.
In order to bring out the quantum effects in the metallic
bonding, we also perform calculations for comparison with
a classical interatomic potential. In addition to revealing
a competition between geometric and quantum effects, in
this section we also explore the properties of “2D metallic
clusters” and consider evidence for 2D (rather than 3D)
quantum effects. Next, in Sec. IV we consider in detail the
thermodynamics and melting behavior of a supported Na20

cluster within the model for three values of the cluster-
surface interaction strength, once again bringing out the
similarities and differences with the same simulations per-
formed with classical interatomic potentials. We also explore
the dimensional effect on the melting behavior when the
clusters are predominantly 2D. The conclusions are given in
Sec. V.

II. MODEL AND METHODOLOGY

A simple system displaying the main physical properties
of metallic clusters is provided by Na,1 and we shall con-
sider Na clusters throughout. Our main approach involves
a DFT-based Kohn-Sham (KS) description28 of the metallic
cluster. We employ either the local-density approximation
(LDA) or the generalized-gradient approximation (GGA) with
Vanderbilt’s ultrasoft pseudopotential,31 as implemented in the
VASP package.32 These approaches will be denoted KS-LDA
and KS-GGA, respectively, in the following. In parts of
the work, we also use a simplified (and computationally
faster) real-space KS method in the LDA incorporating a
soft, phenomenological, local pseudopotential of the form
described by Blaise et al.33 This approximate KS method
(henceforth referred to as “KS-soft”) has been used with
success to describe the fragmentation of charged Na clusters34

and the melting of free (unsupported) Na clusters.35 The KS
formalism yields an expression28 for the internal energy Eclus

of the free cluster (that is, not yet taking into account explicitly
the interaction with the surface).

For comparison, we also describe the metallic bonding
within a Na cluster by a classical many-body Gupta potential
derived within the second-moment approximation (SMA).36–38

The internal energy of a free (unsupported) cluster in this
approach is given by
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where Rij is the distance between ions i and j . The first term
in Eq. (1) is a repulsive potential of Born-Mayer form, and
the second term is a cohesive energy. We take the parameters
for Na from the work of Li et al.39: ξ = 21.398 mRy, A =
1.1727 mRy, p = 10.13, q = 1.30, and r0 = 6.99 a0, where
a0 is the Bohr radius. These authors fitted the parameters to
a database of total energies as a function of lattice constant
(for both fcc and bcc lattices) obtained from calculations in the
LDA for bulk Na. The potential was then checked by using it to
predict bulk properties such as the equilibrium lattice constant
and bulk modulus. For instance, the bulk melting temperature
Tm predicted by the model was found to be 333 K, compared
to the experimental value of 371 K.

Following Ding et al.22 (and the general approach of Shibuta
and Maruyama23), the surface is modeled as an idealized
smooth plane that interacts with the cluster via a Lennard-Jones
9/3 potential, yielding an interaction energy

Eint = ε
3
√

3

2

∑
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σ
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)9

−
(

σ

Zi

)3
]

(2)

where Zi is the coordinate of ion i perpendicular to the surface.
This model for the surface is used with both the SMA (1)
and the KS treatments of the intracluster interactions used to
determine Eclus. In this way the cluster is constrained to lie in
the vicinity of the minimum of the Lennard-Jones well, which
is located roughly a distance σ above the Z = 0 plane. We
choose the parameter σ = 0.3 nm. As was done in Refs. 22
and 23, the Lennard-Jones well depth ε may be treated as
a variable parameter describing the overall strength of the
cluster-surface interaction. The total energy of the cluster plus
surface is

Etot = Eclus + Eint . (3)

Using these models of a supported metallic cluster, we carry
out a global optimization procedure to search for the structure
that minimizes Etot, and perform statistical simulations to ex-
tract thermodynamic averages and study the melting behavior
of the cluster. With both the SMA potential (1) and the KS-soft
method,34,35 we determine the optimum structure at 0 K by
means of a basin-hopping algorithm.40 This algorithm involves
a Monte Carlo (MC) process, combined with optimization
to the nearest local minimum at each MC step, to explore
the minima on the potential-energy surface. With the SMA
potential, we use 105–106 hops (local minimization steps).
The basin-hopping procedure generates a sampling of excited
isomers as well. We store the first (i.e., lowest-energy) six
excited isomers found with the SMA potential in a library
of structures, together with four more higher-energy isomers
chosen randomly from the complete set of local minima
generated.
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Now, the KS model is orders of magnitude more expensive
computationally than the SMA model, and to find the optimum
cluster structure within the KS approach we proceed as
follows. Using the library of structures generated with the
SMA potential as seeds (initial structures) for the MC process,
we perform 50–100 basin hops within the KS-soft model for
each seed structure. Thus, we perform in total 500–1000 basin
hops for each cluster size N , the smaller number applying to
the larger clusters that we consider having up to N = 22 atoms.
For the smaller cluster sizes N < 10, we find that on doubling
the total number of basin hops, we do not observe a change in
the lowest-energy structure found. Note that a basin-hopping
process based directly on the KS model, as we perform here,
often yields structures that were not present at all among the
isomers of the SMA model (see Sec. IV for examples), and
therefore we do not simply relax large numbers of isomers
found within the SMA model. To speed up the basin-hopping
process, we use a relatively small simulation box for the KS
solution of side 45 a0. For the larger sizes N > 8 considered,
there are usually many isomers with closely spaced total
energies (see Sec. IV), and in some cases the ordering of
these isomers can be modified by confinement effects for a
simulation box this small. Therefore, we perform a second
step in which the ten lowest-energy structures found from the
basin-hopping step are relaxed to a precise energy tolerance
(δEtot ∼ 10−8 Ha) using a larger simulation box of side 90 a0

(but the same real-space grid spacing). At this stage, in some
instances (as described in the text) we also relax the structures
found within the KS-LDA or KS-GGA treatments.32

Finally, we perform thermodynamic simulations for Na20

following the general procedures described in our earlier
work,35 using both the SMA and KS-LDA models of the
cluster. With the SMA model, we perform of order 30 constant-
total-energy (microcanonical) MD simulations distributed
over a range of kinetic temperatures from 30 to around 750 K,
with each simulation of order 1 ns (so that the total simulation
time is around 30 ns per cluster). For kinetic temperatures
higher than about 700 K, the Na clusters tend to evaporate
on this time scale. We start at low kinetic temperature using
the optimum structure found above, and increase the kinetic
temperature gradually from run to run, using the coordinates
and rescaled velocities at the end of one run to provide the
initial condition for the next run. Thus, in effect we slowly
heat the cluster. The kinetic temperatures chosen for the MD
simulations are more closely spaced in the range 200 to 450 K,
where the cluster meltinglike process tends to occur. After
this, we perform a multiple histogram fit to the overlapping
histograms of potential energy from the various simulations to
extract the classical ionic density of states �(E). With �(E)
in hand, one can now evaluate thermodynamic averages such
as the ionic specific heat in a variety of ensembles, including
the canonical ensemble.35

In the case of the KS-LDA cluster model, we also
proceed via a slow-heating algorithm, this time performing a
sequence of isokinetic Born-Oppenheimer MD simulations41

at gradually increasing kinetic energies. Because the KS-LDA
approach is much more expensive than SMA, we use a total
simulation time per cluster that is somewhat smaller than for
the SMA model, of about 1 to 3 ns. Finally, a canonical multiple
histogram fit is used to extract �(E).35

III. MONOLAYER STRUCTURES FOR N = 4–22

As we shall see in the next section, when the cluster-surface
interaction ε [see Eq. (2)] is increased, the cluster tends to
become progressively flatter. Useful insight into the role of
quantum versus geometric effects can be gained by considering
a cluster-surface interaction sufficiently strong that the lowest-
energy structures are all monolayer. For this purpose we have
chosen ε = 0.5 eV. We have found optimum structures for
both the SMA model of intracluster interactions [Eq. (1)] and
the KS-soft model34,35 using the basin-hopping algorithm, as
described in Sec. II. The final structures are shown in Fig. 1. We
also give the dissociation energies �Ediss (the energy required
to remove a single neutral atom from the cluster) for these
structures in Fig. 2. Noting that the atoms of a monolayer
structure all lie at the minimum −ε of the Lennard-Jones well
[Eq. (2)] we have here defined

�Ediss(N ) = Etot(N − 1) − Etot(N ) − ε , (4)

correcting for the trivial contribution arising from the cluster-
surface interaction. Thus �Ediss(N ) represents just the “in-
ternal” contribution to the dissociation energy due to the
intracluster interactions.

We see that the SMA structures in Fig. 1 form a geometrical
packing in a triangular lattice, favoring in particular hexago-
nal cluster structures. Thus, for N = 7 and N = 19 atoms
the structures are two- and three-shell hexagonal arrange-
ments, respectively. These are examples of compact, “closed-
geometric-shell” structures in 2D. Similarly, the structure
for N = 10 is a combination of two hexagonal structures.
The structures either side, for example, those at N = 18 and
N = 20, are formed by adding or subtracting one atom to or
from the outside these closed-shell geometric structures. In
fact, a striking property of the SMA structures in Fig. 1 is that
for all 4 � N � 21 the structure for any size N is obtained
simply by adding one atom to the outside of the structure for
N − 1. This simple growth sequence is broken for the first
time at N = 22.

The dissociation energy of the SMA structures (see Fig. 2)
mirrors this growth sequence. Thus, for the smaller sizes
there are peaks at N = 7 and 10, reflecting the stability of
these compact geometric structures. There is then a sawtooth
pattern in �Ediss(N ) for N = 10–18 and N = 19–22. We can
understand this sawtooth variation in a very simple way by
counting the number of nearest-neighbor bonds in Fig. 1
broken in each dissociation. For N = 10–18, the atom to
be removed from an even-N structure is connected by three
bonds to the remainder of the cluster, while that for an odd-N
structure is connected by only two. In consequence, the even-N
structure has a higher dissociation energy. The sawtooth is
interrupted at N = 18 and 19; because of the geometrical
properties of the growth sequence, the atom to be dissociated
has three bonds for both of these sizes. The sawtooth pattern
then resumes after N = 19, but this time it is the odd sizes N

that have three bonds and the greater dissociation energy. Note
also that it tends to be an atom on a corner that is removed in a
dissociation. This happens because it is these atoms that have
two or three bonds to the rest of the cluster; an atom in the
center of a complete side has four bonds.
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FIG. 1. (Color online) Monolayer structures found for a cluster-surface interaction strength ε = 0.5 eV using intracluster interactions from
the second-moment approximation (SMA) [Eq. (1)] and the Kohn-Sham (KS) approach.

Turning to the KS structures in Fig. 1, we note that there
are some similarities and some differences with the SMA
structures. Up to size N = 13 the KS structures also follow a
simple growth pattern in which atoms are added successively
to the outside of each structure, although the structures for
N = 6 and 9 differ from their SMA counterparts. For larger
sizes N > 13 this simple growth sequence is broken. Some

larger structures coincide with their SMA counterpart (N = 19
and 21), but the others generally prefer a more elongated form.
Also, the KS dissociation energies in Fig. 2 form a consistent
sawtooth pattern for all 4 � N � 22.

These differences between the KS and SMA approaches
are indicative of the role of quantum effects in the system of
valence electrons that forms the metallic bonding in the cluster.
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The SMA potential favors a purely geometrical packing,
and the dissociation energies are sensitive to the number of
nearest-neighbor bonds. In metallic clusters, however, the
valence electrons display a fermionic “shell” structure—a
finite-size quantum effect—which is particularly pronounced
at the smaller sizes considered here.1,2 A cluster with a closed
fermionic shell is particularly stable, in analogy to the noble
gases in the periodic table. In the case of free (unsupported)
Na clusters, the closed shells coincide with those of the 3D
simple harmonic oscillator (SHO), namely, for N = 2, 8, and
20 electrons.1,2 Since in a Na cluster each atom contributes one
valence electron, these are also the (magic) numbers of atoms
for which there is pronounced stability. For the monolayer
structures discussed here, one might expect that it is the closed
shells of the 2D SHO that are appropriate: N = 2, 6, 12, and
20. These magic numbers occur in quasi-2D semiconductor
quantum dots.42

For a closed-shell system, the valence-electron gas is
generally circular (in 2D) or spherical (in 3D), but between
closed shells, the valence-electron gas tends to minimize
its energy by spontaneously deforming. This phenomenon
is well known in nuclear physics,43 and has been shown
to apply also to small, free 3D metallic clusters.44 For
small cluster sizes the deformation of the valence-electron
gas can in turn drive the distribution of Na+ ions away
from circular symmetry, producing not just a distortion, but
a new structure. We see evidence for this phenomenon in
Fig. 1 in the tendency of the KS model to yield elongated
ground-state structures (relative to the SMA structures) for
N > 12, as is especially noticeable in the size range N =
14–18. (The case N = 20, discussed in more detail in the
next section, is an exception, because N = 20 is expected to
have closed fermionic shells, yet the optimum KS structure is
still somewhat elongated.) We also see from Fig. 1 that the
compact geometric structure can still have the lower energy
in particularly favorable cases, for example, the three-shell
hexagonal structure at N = 19. Thus, there is evidence of
competition between geometric and quantum effects in the KS
structures.

The role of quantum effects is particularly striking in the
dissociation energy (Fig. 2) where one finds a consistent
sawtooth pattern in which the odd sizes always have the
smaller dissociation energy. This effect, observed also in free
metallic clusters,1,2 is a result of the pairing of spins: to a
first approximation, the spins for N even form pairs (spin
up and down) in each single-particle energy level, yielding a
more stable structure than for N odd, which has an unpaired
final spin. Note that while the SMA model also yielded
a sawtooth pattern for some sizes, this had a geometric
origin and it could be either N even or N odd that gave
the smaller dissociation energy. Also, the amplitude of the
odd-even oscillations in Fig. 2 tends to be greater for the KS
model.

There may also be indications of 2D fermionic shell
closures in the KS dissociation energies in Fig. 2. It is striking
that the amplitude of the odd-even oscillations decreases
abruptly for N > 12, which could be because a new fermionic
shell has been begun following a closed shell at N = 12. The
evidence for a 2D fermionic shell at N = 6 is less clear,
although the dissociation energy for the system with one
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FIG. 2. (Color online) Dissociation energies �Ediss of the sup-
ported monolayer structures of Fig. 1, corrected for the cluster-surface
interaction strength ε = 0.5 eV.

additional atom, N = 7, is particularly low. The evidence for
a shell closure at N = 20 seems unclear, however, either in the
structures or in the dissociation energy.

IV. THERMODYNAMICS AND MELTING FOR N = 20

In this section we discuss in detail the structure and
thermodynamics of a supported Na20 cluster within our model.
Figure 3 shows the lowest-energy structures of Na20 as a
function of the cluster-surface interaction strength ε [see
Eq. (2)]. The intracluster interactions in this figure are treated
within the KS-LDA approach. After determining candidate
lowest-energy structures at values of ε from 0 to 0.5 eV in
steps of 0.05 eV, we made a final series of high-precision
relaxations in order to plot the total energy (3) of each structure
found as a function of ε (see the upper panel of Fig. 3). The
crossovers of these energy curves enable us to identify a range
of ε values for which a particular structure is the lowest-energy
structure (that we have found). In this way, we find a series
of structural transitions at particular values of ε, in which
the cluster becomes progressively flatter as ε increases. This
behavior is similar to that found for small clusters of Fe, Co,
and Ni in Ref. 26 using classical methods with parametric
interatomic potentials.

The ground-state geometry of free Na20 (ε = 0) [Fig. 3(a)]
is quite spherical in shape. For small values of the cluster-
surface interaction strength ε ≈ 0.02 eV, as the cluster-
surface interaction starts to become comparable to the internal
interactions within the cluster, the lowest-energy structure
deforms from the spherical shape to a slightly elongated,
though still quite compact, form with the largest face aligned
parallel to the surface [Fig. 3(b)]. As ε increases further, the
lowest-energy structure eventually flattens, first into a structure
with three ionic layers [Fig. 3(c)], and then into a two-layer
structure [Fig. 3(d)]. Finally, the structure becomes monolayer
for ε � 0.36 eV [Fig. 3(e)]. The flatter structures lower their
energy by increasing the contact area between the cluster and
the surface for larger ε.

Let us consider the isomers in more detail in one case,
that of the monolayer structure [Fig. 3(e)]. Figure 4 shows the
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FIG. 3. (Color online) Total energy of a Na20 cluster on a surface
(upper panel) as a function of cluster-surface interaction strength ε

[see Eq. (2)] for the structures (a)–(e) shown in the lower panel.
Structure (a) (short-dashed line) is the lowest-energy structure for
0 � ε � 0.02 eV; structure (b) (full line) for 0.02 � ε � 0.18 eV;
structure (c) (dotted line) for 0.18 � ε � 0.21 eV; structure (d) (full
line) for 0.21 � ε � 0.36 eV; and structure (e) (dashed line) for ε �
0.36 eV.

ground and first three excited isomers in the classical SMA
potential and several KS models. The SMA isomers have been
determined after 106 basin hops. For the KS isomers we first
performed of order 500 basin hops within the KS-soft model
(as discussed in Sec. II), retaining the lowest seven structures
found. A final high-precision relaxation of these structures
was made in the KS-LDA and KS-GGA approaches [with
a projected-augmented plane-wave (PAW) treatment of ionic
cores, as implemented in VASP32].

The three lowest-energy structures within the SMA
[Figs. 4(a)–4(c)] are nearly degenerate to within about 1 meV,
reflecting the fact that these structures may be regarded as sur-
face rearrangements of each other. Thus, it is possible to obtain
the ground-state SMA structure for N = 21 in Fig. 1 by adding
one atom to the outer shell of each of these three structures.

The situation is different with a KS treatment of intracluster
interactions. The KS ground-state structure [Fig. 4(e)] corre-
sponds to an excited isomer within SMA (lying at 20 meV), and
is separated from the first excited isomer by about 20–35 meV.
(While there is some variation in the excitation energy of iso-
mers according to the KS model used, the ground-state struc-
ture is the same for each model.) The first excited isomer in the
SMA [Fig. 4(b)] appears to be disfavored in the KS approach; it

0 8meV 1 3 meV 20meVΔE

35 meV
19meV
26 meV

61meV
65meV
49meV

68 meV
47 meV
45 meV

ΔE

FIG. 4. (Color online) In Fig. 4, � E value for structures (b) and
(c) are 0.8 meV and 1.3 meV respectively. In the figure 0.8 becomes
0 � 8 and same for 1.3 . Our original figure does not have this
problem. Please correct it. Ground-state (left column) and first three
excited (right columns) monolayer isomers of Na20 found by the
basin-hopping procedure for a cluster-surface interaction strength
ε = 0.5 eV. Notation: SMA, second-moment approximation; KS,
Kohn-Sham; PAW, projected-augmented plane wave; GGA, gener-
alized gradient approximation; LDA, local density approximation;
KS-soft, the simplified Kohn-Sham model in the LDA with a soft,
phenomenological pseudopotential (see text). Excitation energies �E

are shown relative to the ground-state structure.

is not found by the basin-hopping procedure, and when we tried
to relax it within a KS approach it “slipped” to the geometry
shown as the first excited isomer for KS [Fig. 4(f)]. Note that
the first three excited isomers in the KS model [Figs. 4(f)–4(h)]
may be regarded as surface rearrangements of each other and of
the lowest three SMA isomers [Figs. 4(a)–4(c)]. However, the
separation of these three isomers of KS is much greater than the
1 meV separation found for the SMA structures. These obser-
vations highlight the fact that the energy of the metallic cluster
in a quantum approach is sensitive, in a complicated way, to the
deformation and symmetry of the wave function, and not just
to the geometric packing of the ions or the number of nearest
neighbors.

Note that excited structures such as (g) in Fig. 4, or
ground-state structures such as the KS structure for N = 16 in
Fig. 1, are not found among the structures given by the SMA
basin-hopping process (even after 105–106 hops), but become
common in a KS basin-hopping process. This illustrates the
importance of basing the basin-hopping process directly on
the KS model in order to achieve a fully unbiased search for
the ground-state structure, despite the high computational cost
of such an approach.

Finally, we turn to the thermodynamic and melting behavior
of the supported Na20 cluster. Figure 5 shows the canonical
ionic specific-heat capacity of the cluster for ε = 0.1 eV, ex-
tracted by an ab initio MD simulation and multiple-histogram
fit using a KS-LDA description of the intracluster interactions
throughout (as described in Sec. II). For comparison, we also
give the specific-heat curve for a free Na20 cluster (ε = 0)
calculated by similar methods, taken from Ref. 30. Inspection
of the ionic trajectories shows a meltinglike transition to occur
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FIG. 5. (Color online) Canonical ionic specific-heat capacities of
Na20 for surface-cluster interaction strength [see Eq. (2)] ε = 0.1 eV
and for the free cluster (ε = 0, taken from Ref. 30) for KS descriptions
of the intracluster interactions. The specific heat is expressed as a
multiple of its zero-temperature (classical) limit C0.

for both ε values, with the cluster passing from a solidlike
behavior at low temperature (vibration of ions around fixed
points combined with overall rotation) to a liquidlike behavior
at high temperatures (diffusion throughout the entire volume of
the cluster). The meltinglike transition is broad, with a width of
around 50–100 K and a “melting temperature” (conventionally
corresponding to the maximum on the specific-heat curve)
around 220–240 K. There is a significant change in the
specific-heat curve between the free and supported cluster:
for ε = 0.1 eV the curve is broader and the meltinglike
transition correspondingly less well defined, and the melting
temperature shifts to a slightly higher value. This marked
change in the specific-heat curve is associated with a change
in the lowest-energy structure at 0 K (see Fig. 3).

Canonical ionic specific-heat curves are shown in Figs. 6
and 7 for ε = 0.38 eV and ε = 0.5 eV, respectively. For both

1.00

1.10

1.20

1.30

1.40

1.50

1.60

100 200 300 400 500

sp
ec

ifi
c 

he
at

  (
C

 / 
C

0)

temperature  (K)

SMA

KSNa20

ε = 0.38 eV

FIG. 6. (Color online) Canonical ionic specific heat capacity
of Na20 with surface-cluster interaction strength [see Eq. (2)] ε =
0.38 eV for SMA and KS descriptions of the intracluster interactions.
The specific heat is expressed as a multiple of its zero-temperature
(classical) limit C0.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

100 150 200 250 300 350 400

sp
ec

ifi
c 

he
at

  (
C

 / 
C

0)

temperature  (K)

Na20

ε = 0.5 eV

KS

SMA

FIG. 7. (Color online) Canonical ionic specific heat capacity of
Na20 with surface-cluster interaction strength ε = 0.5 eV. See Fig. 6
for other notation.

these values of ε, the lowest-energy structure at 0 K is a
monolayer structure (see Fig. 3), but the choice ε = 0.38 eV for
Fig. 6 is very close to the critical value where the lowest-energy
structure becomes a two-layer structure. This leads to an
interesting difference in the melting behavior.

For ε = 0.38 eV inspection of the ionic trajectories shows
that, when the cluster is liquidlike, ions frequently hop to the
second layer and then back to the first, usually reentering the
first layer at a different position from where they left. This
process occurs readily because there are energetically close
isomers with a two-layer structure. We find a clear peak in
the specific-heat capacity around 480 K, corresponding to the
temperature at which the ions first have sufficient energy (on
average) to hop to the second layer (that is, to overcome the
barrier required to move to an energetically close two-layer
structure). For higher temperatures, the cluster is found to be
in a liquidlike state, and the mechanism of hopping to the
second layer and back contributes significantly to the overall
diffusion of the ions within the cluster.

On the other hand, for ε = 0.5 eV, one finds that hops to the
second layer are highly suppressed. At 300 K, for instance, the
system spends less than 1% of its time in a two-layer configu-
ration, and the ionic dynamics is thus constrained mostly to a
plane (2D). At the lower temperatures T � 300 K, parts of the
ground-state triangular lattice become distorted owing to the
random movement of the ions, yielding distorted triangles or
rectangles, for example. The ionic motion becomes gradually
more diffusive as the temperature increases. For temperatures
above 400 K, one finds that the ions also begin to move
increasingly in a vertical direction, toward the second layer.
The increasing phase space thus available to the ions means
that the specific heat continues to rise beyond T = 400 K, and
there is no clear peak in the specific heat. Around T � 600 K
the ions of the cluster tend to evaporate on the time scale of
several hundred picoseconds used for the sampling runs.

We thus demonstrate clear dimensional effects in the
melting of the clusters. When the ions are constrained to
move mostly in 2D, as they are at ε = 0.5 eV, the possibilities
for diffusion are reduced compared to the 3D case (free Na
clusters), and the onset of a liquidlike behavior is gradual, with
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no obvious peak in the specific-heat curve. At intermediate
values of ε ≈ 0.4 eV, the motion is still predominantly 2D,
but there are energetically close two-layer isomers; when the
barrier to these configurations can be overcome, the sudden
availability of additional phase space can give a peak in the
specific-heat curve and a meltinglike transition. Even in this
case, however, we note that the observed melting temperature
of Tm ≈ 480 K is significantly above the melting point of bulk
Na, 371 K, contrary to the case of small free Na clusters,7,8

which melt at temperatures below that of the bulk (and contrary
to the general paradigm for the melting of a small particle1).

For comparison, we also give in Figs. 6 and 7 the specific
heat calculated for SMA interatomic interactions. Inspection
of the ionic trajectories shows that the mechanisms of melting
are qualitatively similar to the mechanisms in the KS model,
but there are quantitative differences in the specific-heat
curves. Thus, for ε = 0.38 eV the meltinglike transition occurs
around 260 K, a lower temperature than observed with the
KS model. Similar differences in melting temperatures were
observed for free (unsupported) Na clusters in Refs. 29 and
30. In these references it was found that ab initio DFT-
based melting temperatures were in significantly better agree-
ment with experiment than those calculated with the SMA
potential.

V. CONCLUSIONS

We have presented a model for a supported metallic cluster
that employs a first principles DFT-based description of the
cluster, but approximates the surface as an idealized smooth
plane interacting with the cluster via a parametric potential
(here taken to be of Lennard-Jones type). Thermodynamic
simulations, or global optimization methods such as basin
hopping, using this model are comparable in computational
cost to similar methods with the free clusters. The results
of this model were compared in detail with one in which
the intracluster interactions were described instead by a
parametric interatomic potential of SMA type, showing that
important quantum effects were absent in the SMA-type
simulations for small metallic clusters. The classical SMA
model favors a purely geometrical packing and is sensitive to
the number of nearest neighbors, while a quantum treatment
of the valence electrons (as provided by a KS model) yielded
significant differences both in the lowest-energy structures
and in energetic properties such as the dissociation energy of
the supported clusters. These differences could be ascribed

in part to fermionic shell closures, and we found some
evidence that these shell closures could be 2D rather than
3D for the monolayer cluster structures that occur for large
cluster-substrate interactions.

We showed that the Kohn-Sham and Gupta models could
yield significant quantitative differences in melting tem-
peratures and caloric curves. We also demonstrated clear
dimensional effects in the melting of supported clusters by
considering the case of a high cluster-surface interaction
strength yielding a 2D monolayer structure. For intermediate
values of the cluster-surface interaction strength ε ≈ 0.4 eV,
the Na20 cluster gave a clear meltinglike transition, with a
peak in the specific-heat curve, but at an above-bulk melting
temperature. In this case, there were energetically close two-
layer cluster structures. At higher cluster-surface interaction
strengths ε � 0.5 eV, where the ionic motion is constrained
to be highly 2D, the onset of liquidlike behavior is gradual
and there is no clearly definable melting temperature. Even
for small values of the cluster-surface interaction strength,
ε ≈ 0.1 eV, the melting temperatures and caloric curves could
be markedly different from those of the free cluster.

An obvious generalization of the present model would
be to consider an atomistic surface, and to extend the DFT
treatment to the atoms of the surface. Such an approach
for thermodynamic properties would be computationally very
expensive, however, and the present model is a compromise
solution, useful for a class of systems. It is likely to be realistic
whenever the metallic bonding is not significantly disrupted
by interaction with the substrate, which may be the case for an
insulating substrate, for example. Our approach might also be
useful in situations where the main interest is in the properties
of the cluster away from the surface, such as the interaction
between the atoms of a carbon nanotube and the cluster in
a description of the nanotube growth process,20 where the
nanotube grows from the top of the supported cluster.
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