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Abstract

We investigate the problem of wealth distribution from the viewpoint
of asset exchange. Robust nature of Pareto’s law across economies, ide-
ologies and nations suggests that this could be an outcome of trading
strategies. However, the simple asset exchange models fail to reproduce
this feature. A yardsale(YS) model in which amount put on the bet is a
fraction of minimum of the two players leads to condensation of wealth
in hands of some agent while theft and fraud(TF) model in which the
amount to be exchanged is a fraction of loser’s wealth leads to an expo-
nential distribution of wealth. We show that if we allow few agents to
follow a different model than others, i.e. there are some agents following
TF model while rest follow YS model, it leads to distribution with power
law tails. Similar effect is observed when one carries out transactions for
a fraction of one’s wealth using TF model and for the rest YS model is
used. We also observe a power law tail in wealth distribution if we allow
the agents to follow either of the models with some probability.

PACS:89.65.Gh,64.60.-i

1 Introduction

Rich get richer and poor get poorer. Worse, rich people do not seem to be sig-
nificantly cleverer or more hardworking than the poorer lot. This has puzzled
philosophers and economists alike all the way from Buddha to Marx. A century
ago, an Italian economist Pareto gave a celebrated empirical law suggesting that
it is just a law of nature that 80% of the wealth is in 20% hands. In fact, on
surveying various countries and economies in Europe, he gave a famous law,
now known as Pareto law. It said that the probability P (x) that an individual
has wealth x follows a power law for large x, i.e. P (x) ∼ x−ν . Distribution
of personal wealth and income in countries as diverse as USA, UK, Japan and
India seem to have a power law tail [1, 2, 3, 4, 5]. Since it seems to be indepen-
dent of the political systems of those countries, which were widely different, it
can be conjectured that this distribution is the inherent outcome of economic
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activities. In fact, it was recently observed that even in ancient Egyptian so-
ciety, wealth distribution could be following the power law[6]. In this society,
obviously myriad of factors playing role in modern economies do not exist. Thus
it could be conjectured that there has to be an explanation for the law from
simple and primitive principles of economic activity.

One of the striking economic activity that every society, including the most
ancient ones, is capable of, is ‘give and take’. Someone gives you a cup of coffee,
you hand him over a dollar. This is a simple exchange of assets. Let us call
it ‘additive asset exchange’. However, you do not keep your entire wealth at
stake to a coffee shop owner. But you may keep it at stake in bank. Here
you get money which is proportionate to the money you own. Let us call
it ‘multiplicative asset exchange’. Researchers have looked at the models of
wealth distribution in presence of additive and multiplicative asset exchange and
results are intriguing. Somehow, simple asset exchange models are unable to
reproduce the power law tail which seems to be robust feature across economies.
For multiplicative asset exchange models, in which all agents start with same
wealth, have similar capabilities (none is cleverer than the other in any sense)
the emerging distribution of wealth is even less equitable than a power law. It
turns out that in ‘free and fair’ trade, one agent (by pure luck, since we have not
assigned extra capabilities to any agent) ends up swallowing the entire wealth.
In another ‘theft and fraud’ rule, we get an exponential distribution of wealth.

What are these models?[7] We consider two models given by Brian Hayes.
In these models, there is no consumption of wealth nor any production. In the
first model, we assume that everyone knows the value of everybody else’s asset
perfectly. This ’free and fair’ (since nobody is able to conceal true value of his
assets) model is called Yardsale model[8]. It is the following: There are N indi-
viduals in society and they trade with each other on one-to-one basis. Everyone
is able to value everyone else’s assets perfectly while trading. Naturally, the
amount traded is a fraction of assets of poorer party. However, we can have
another rule. In this rule, the amount to be exchanged is a fraction of loser’s
wealth. Naturally, poorer agents have more to gain by playing with richer ones
and they can do so only by deception. Hence it has been named theft and fraud
(TF) model[9]. The YS and TF rules can be given as follows. Let us consider
set of N agents with wealth m1(0), m2(0) . . . mN(0) at time T = 0. At each
timestep T = t we choose two agents i and j and their wealths mi(t) and mj(t)
are updated as:

mi(t + 1) = mi(t) + ∆m (1)

mj(t + 1) = mj(t) − ∆m (2)

where ∆m is the net wealth exchanged between that two agents. (Wealth of
rest of the agents is unchanged.) In the YS model, ∆m = α min(mi(t), mj(t)).
Whereas, in the TF model the money exchange is fraction of the wealth loser
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player. Then, ∆m = α(mj(t)) (if j is the loser). The parameter α is a uniformly
distributed random number in the interval [0, 1].

However, none of these models reproduces the power law distribution of
wealth found in several societies. The YS model essentially produces condensa-
tion of wealth in hands of one of the agents. Whereas, the TF model yields an
exponential distribution of assets. None of these models reflect the empirically
observed distribution of wealth [10]. To mimic these observed features of income
and wealth distribution, several efforts have been made. Some researchers have
applied the techniques of statistical physics to the economic system. They treat
the economic agents as particles in gas. The total wealth is conserved which is
analogous to energy in ideal gas. Thus the equilibrium probability distribution
of money P (x) should follow the Boltzmann-Gibbs law P (x) = c exp−x/T . Here
x is money, T the average money per agent and c is constant [11] . Chatter-
jee and Chakrabarti argued that not all the money is put at stake in market.
Every economic agent saves something for a rainy day. They studied the ef-
fect of saving propensities for the agents [12]. Two cases have been studied.
In the first case, all the agents have the same fixed saving factor [12] while in
other case the agents have a quenched random distribution of saving factors[13].
The former case yields the gaussian distribution of wealth while the later model
gives a power law distribution of wealth. The other model was introduced by
Sinha. He assumed that a richer player is less likely to be aggressive when bar-
gaining over a small amount with a poorer player. When this role is added
to the YS model we can see the exponential and power-law distribution of
wealth [10]. A similar model was also introduced by Rodŕıquez-Achach and
Huerta-Quintanilla[14]. Several researchers obtained Pareto-like behavior using
different approaches such as: rich people trading with the gross system while
poorer agents continue to have two-party transaction [15], flow of wealth from
outside leading to inelastic scattering [16], generalized Lotka Volterra dynam-
ics [17] and stochastic evolution equation which incorporate trading as well as
random changes in prices of investments [18].

Here, we would like to argue that entire society playing with a simple model
is unlikely and unrealistic. It is quite likely that different players play within
different paradigms. Thus it is important to investigate wealth distribution in
societies where we have mixed models. In this work, we will study the system
from this viewpoint. In one model, we will let a few players to play by TF model
while the others to play by YS model. We will study the effect of this mixing
on the distribution of wealth at equilibrium. In the second model, the agent
will invest some part of his money in YS model and remaining part in TF trade
system.

We try yet another system in which players take decision to play using YS
or TF model with certain probability. This could be termed as a system with
multiple strategies since unlike previous case, players have a choice to play using
either of the models.

We note that condensation can not be steady state in the above models.
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The richest agent, while playing by TF model or playing with a player using
TF model could lose his wealth easily. We observe that few agents using TF
strategy would significantly change the possible steady state of the system. All
these systems lead to a wealth distributions which show a clear power-law tail
at higher values of wealth which is comparable to realistic situations in some
cases.

2 The Model(s)

We assume that despite limitations, YS model is the most reasonable model of
asset exchange. We argue that the wealth distributions observed in reality are
due to perturbations to this model. The perturbations we introduce seem not
only be able to deliver a power law tail in the wealth distribution of individuals,
but we also get a variety of exponents as seen in realistic economies. We consider
a closed economic system where the total amount of money M is conserved and
the number of economic agents N is fixed. No debt is permitted. Initially, we
divide the total money M among N agent equally.

We consider three different models. In the first model, we introduce TF
agents in a pure YS model. In the second model, we presume that all asset
exchanges are partly TF and partly YS. In the third model, we will let each
player to choose to use YS or TF model with certain probability. All these
variants give us a power-law distribution of wealth.

(A) We consider a case of one agent playing by TF model (say kth agent)
while everyone else plays by YS model. The transaction will go according to
the following scheme. We choose any two players i and j randomly. If i = k
or j = k, the transaction between i and j goes by TF model. (We must note
that this asymmetry is not an essential prerequisite of the results. In the case
that, if i = k or j = k, the transaction goes by TS or YF with equal probability,
our results do not change.) If both agents are following YS model, transaction
rule is YS. We must mention that even one agent playing with TF model ruins
the possibility of condensation of wealth. Thus, the asymptotic distribution is
expected to change. We observe that it changes significantly even in presence
of one agent.

(B) We will let all players to use a part of their money λimi(t) in YS strategy
and the other part (1 − λi)mi(t) to used it in TF trade. In this case, the
wealth distribution will depend on distribution of λis. We study two cases of
distribution of λis: (i) λi’s have same value for all agents, i.e. λi = λ for
1 ≤ i ≤ N . (ii) λi’s have a quenched random distribution. Let us consider this
to be uniform distribution over an interval [0, 1].

(C) We consider a case in which every agent can trade by either of models
with some probability. We suppose that ith agent has inclination to trade by
YS model with probability pi and by TF model with probability (1 − pi). We
will let each agent to choose the value of p from a uniform random number in
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the interval [0, 1]. We will assume the quenched state, where the agents have
different value of p. We conduct the transactions as follows: we select two agents
i and j randomly. The players choose to trade by TF model with probability
pi and pj and by YS model with probability 1 − pi and 1 − pj . If the two
agents chose different model the transaction will occur by YS model. (Even
here, we must mention that asymmetry does not play a significant role. If we
make a rule that transaction will be there if and only if both agents follow the
same model, we get the same asymptotic distribution.) We observe that the
asymptotic wealth distribution has a power law tail with fairly high value of
exponent.

3 The Simulation and Result

In these models, we need to find the asymptotic probability distribution. We
need to employ certain systematic approach to check if the asymptotic distribu-
tion is actually reached. In all these cases we find that the average wealth of the
richest agent as an useful quantifier. We plot this quantity as a function of time
and have taken the saturation of this quantity as an indicator of the possibility
that the wealth distribution has saturated. (Apart from this plot, we have also
checked the wealth distribution at different timesteps and have checked if it has
converged.)

In model A, we recorded the wealth of the richest agent. We have introduced
only one TF agent in a sea of YS agents. The average wealth of richest agent is
plotted as a function of time in Fig. 1. Here we notice that average wealth of
the richest agent saturates to same value for all values of N . This value is not
unity. Thus one TF agent is able to qualitatively change the dynamics of the
system. Not only that, all these models show similar characteristics, though the
effect of single TF agent is apparent in a larger system only after a longer time.
Let us denote the which wealth of richest agent saturates as tc. As expected
tc increases with N . The saturation time tc scales with N as tc(N) ' aN b

with a ' 0.90 and b ' 2.23. This behavior is depicted in Fig. 2. The tc(N)
gives us an idea about the time needed for the system to attain the steady
state. We study the wealth distributions for t > tc(N). In Fig. 3, we show
the wealth distribution for N=100, for t = 106. We average over 3×103 initial
conditions. The system follows a power-law wealth distribution with exponent
ν ' 1.1. We checked the robustness of the distribution at various values of N ,
i. e. N = 300, at time t = 106. We again average over 3×103 initial conditions.
This distribution also follows a power-law tail with the same exponent ν ' 1.1.
Pareto exponent in this strategy will be ' 0.1. It is very small compared to
that observed in real economies.

In model B, agents use different fractions of their money in YS and TF
models. This could be compared with individuals investing their money in bonds
and stocks. When one has bought stocks, one is paid according to performance
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of the company rather than his own wealth at that time. Thus it is a realistic
situation in modern context. First, we consider the case in which the fraction λ
is a constant, i.e. one uses (1 − λ)mi(t) with TF model and rest of the money
in YS model. We again study the evolution of wealth of the richest agent as a
function of time. We find that the wealth of richest agent saturates at certain
time and as in previous case, we denote this time by tc(N). In Fig. 4 we have
plotted tc(N) as a function of N for λ = 0.999. We can see that the saturation
time tc(N) scales with number of agents as tc(N) ' aN b with a ' 513 and
b ' 1.204.

For λ = 1, we have a pure YS model which leads to condensation of wealth
and λ = 0 we have a TF model which leads to an exponential distribution. For
λ very close to 1 but not exactly 1, we observe that the asymptotic distribution
has a power law tail. In the general case 0 < λ < 1, as λ increase from 0
to 1, the asymptotic distribution of wealth is observed to go from exponential
to condensate. In Fig. 5, for λ = 0.999. we demonstrate the asymptotic
wealth distribution. It clearly displays a power-law with exponent ' 1.5, The
simulation was carried out for N = 100, t = 106 iterations and averaged over
3×103 initial conditions. This model has a tunable parameter λ and only for
values close to unity we observe a power law behavior.

However, everyone has a different appetite for risk. We attempt a model
in which λi’s have a quenched random distribution. We consider a uniform
distribution of λ’s. As in previous case, we find the saturation time tc at which
maximum wealth saturates. In Fig. 6, we have plotted tc(N) as a function
of N for this model. The saturation time tc(N) scales with number of agents
as tc(N) ' aN b with a ' 240 and b ' 1.561. It is interesting to note that
the steady state of wealth distribution has a power-law tail with ν ' 2.0 as
that shown in Fig. 7. However, in the region corresponding to low wealth, the
wealth distribution is found to be exponential. The inset of Fig. 7 show that
behavior. In this strategy Pareto exponent is ' 1.0. This strategy seem to be
more realistic as compared to model A previously discussed and it also gives
exponents which are comparable to realistic case.

In model C, the transaction is carried on depending on the agent’s choice
who chooses to play with YS or TF model with certain probability. Now some
transactions will follow YS model and asset exchange in rest of the transactions
will be decided by TF model. We define the saturation time tc(N) by looking at
wealth of richest agent as done in previous cases. We observe that tc(N) ' aN b

with a ' 16.82 and b ' 1.56 in this case. (See Fig. 8.) The asymptotic
distribution of wealth shown in Fig. 9. It has a power-law tail with exponent
ν ' 3.7. In this case Pareto exponent is ' 2.7 which is comparable to one
observed in societies like Italy.[20]
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Table 1: Comparison of Power-law and Lognormal Fits.
Model Fit χ2/Dof R2

Model A Lognormal 3 ×10−5 0.4911
Power-law 7 ×10−7 0.9985

Model B case a) Lognormal 10−5 0.57
Power-law 5 ×10−7 0.9976

Model B case b) Lognormal 10−5 0.057
Power-law 2 ×10−6 0.8183

Model C Lognormal 10−3 0.30
Power-law 10−4 0.87

We have checked that the power law is a better fit than lognormal for all the
cases discussed in the paper in several ways. We have checked it visually. We
have checked the goodness of fit by finding χ2/DoF and R2 for three models
by fitting it a power law functional form and lognormal fit. The values are
given in Table 1. It is clear that R2 values are higher and very close to unity
for power-law fit which shows that this model is relevant for higher fraction of
data and χ2/DoF values are lower for a power law fit which shows that error is
smaller in this fit in all cases.

For models B and C where Pareto exponent is more than one, we have also
plotted the Zipf plot. We order the wealth of agents in descending order and
plot the wealth of kth ranked agent as a function of its rank k. It is known that
if the probability distribution has a tail of nature P (x) ∼ x−(1+α), the rank
distribution xk ∼ k−1/α where xk is the kth largest value in the distribution.
Our Zipf plots are consistent with this result.

4 Conclusions

We point out that having a society in which all agents use the same model is
unrealistic. The agents are likely to use different models. In this context, we
studied YS and TF models. For a pure YS model, condensation of wealth is
observed while a pure TF model leads to exponential distribution. We have
presented three different models in which the above two models are mixed. In
model A, we showed that infinitesimal fraction of TF agents can significantly
alter wealth distribution of society where dominant model is YS. If we equate
YS model with ‘honesty’, and TF model with ‘cheating’, the presence of the
other possibility seems to help the society to have more equitable distribution
though attaching these virtues to these models is debatable[9]. This mixing
gives rise to the wealth distribution with power- law behavior with exponent
ν ' 1.1. In model B, we considered each transaction to be consisting of YS
and TF component. It also leads to a power law tail in wealth distribution.
This could be thought as individual investing in debt market as well as in real
estate or bonds where return is proportional to performance of the company
he invested in. Here we considered two cases a) Homogeneous agents where
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they put λ fraction of their wealth in YS model. b) Inhomogeneous agents
putting λi of his wealth (say xi) in YS model where λi have quenched random
distribution. In former case, for λ close to one, i.e. for λ = .999 we observe
power-law with exponent ν ' 1.5. In the later case, we observe that the wealth
distribution has a power-law tail with exponent ν ' 2.0. Interestingly, we also
recover exponential decay at smaller values of wealth which matches with known
data about wealth distribution in United Kingdom and United States [21]. We
also studied a model in which agents indulge in YS or TF trading with some
probability. It gives a power-law tail with a larger exponent ν ' 3.7.

PMG thanks Dr. S. Sinha for discussions. MAS thanks Govt. of Yemen for
scholarship.
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Figure 1: Wealth of the richest agent as function of time step for various value
of number of agent for model A . We average over 103 initial conditions.

9



Figure 2: For model A, we plot saturation time tc as function of number of
agent N on logarithmic scale. We average over 103 initial conditions.
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Figure 3: Asymptotic wealth distribution for model A. We get a power law with
exponent ν ' 1.1. Simulations are carried out for N = 100, 300. We wait for
106 transients and average over 3×103 initial conditions[19].
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Figure 4: For model B with homogeneous agents, we plot saturation time tc as
a function of number N of agents on logarithmic scale. We average over 103

initial conditions.
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Figure 5: Asymptotic wealth distribution for different values of λ for model B
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ν ' 1.5. Simulations are carried out for N = 100. We wait for 107 transients
and average over 3×103 initial conditions.
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Figure 6: For model B with inhomogeneous agent, we plot saturation time tc

as a function of number of agent N on logarithmic scale. We average over 103

initial conditions.
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Figure 8: For model C , we plot saturation time tc as a function of number of
agent N on logarithmic scale. We average over 103 initial conditions.
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Figure 9: Asymptotic wealth distribution for model C. We get a power law with
exponent ν ' 3.7. Simulations are carried out for N = 5000. We wait for 107

transients and average over 3×103 initial conditions.
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