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Abstract. Differential equations and maps are the most frequently studied examples
of dynamical systems and may be considered as continuous and discrete time-evolution
processes respectively. The processes in which time evolution takes place on Cantor-
like fractal subsets of the real line may be termed as fractal-time dynamical systems.
Formulation of these systems requires an appropriate framework. A new calculus called
Fα-calculus, is a natural calculus on subsets F ⊂ R of dimension α, 0 < α ≤ 1. It involves
integral and derivative of order α, called Fα-integral and Fα-derivative respectively. The
Fα-integral is suitable for integrating functions with fractal support of dimension α, while
the Fα-derivative enables us to differentiate functions like the Cantor staircase. The
functions like the Cantor staircase function occur naturally as solutions of F α-differential
equations. Hence the latter can be used to model fractal-time processes or sublinear
dynamical systems.

We discuss construction and solutions of some fractal differential equations of the form

D
α
F,tx = h(x, t),

where h is a vector field and DαF,t is a fractal differential operator of order α in time t. We
also consider some equations of the form

D
α
F,tW (x, t) = L[W (x, t)],

where L is an ordinary differential operator in the real variable x, and (t, x) ∈ F × Rn

where F is a Cantor-like set of dimension α.
Further, we discuss a method of finding solutions to F α-differential equations: They

can be mapped to ordinary differential equations, and the solutions of the latter can be
transformed back to get those of the former. This is illustrated with a couple of examples.

Keywords. Fractal-time dynamical systems; fractal differential equations; fractal calcu-
lus; Cantor functions; subdiffusion; fractal-time relaxations.

PACS Nos 05.45.Df; 02.30.Hq; 02.30.Cj

1. Introduction

It is now a well-known fact that many structures found in nature can be modelled
by fractals [1–3]. The mathematical properties of fractals are also substantially
explored [1,4–7].
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Figure 1. The staircase function Γ(α+1)SαC(x) for the middle 1
3
Cantor set.

Fractals are often so irregular that defining smooth, differentiable structures on
them is impossible. The methods of ordinary calculus are either inapplicable or
ineffective. For example, the ordinary derivative of a Lebesgue–Cantor staircase
function (see figure 1 for its graph) is zero almost everywhere in the Lebesgue sense.
Consequently this function is not a solution of an ordinary differential equation.
This simple example brings out the need to extend ordinary calculus in order to
address problems involving fractal structures and phenomena. Fractional calculus
[8–11] fills in this gap to some extent. Fractional kinetic equations, fractional
master equations etc. [12–18] do provide remarkable models for several phenomena
involving scaling and memory effects. But most of the fractional operators are non-
local and therefore not suitable to construct causal models involving local scaling.
To circumvent this, fractional derivatives were renormalized to construct local

fractional differential operators [19–22], which were further explored in [23,24].
These operators brought out a striking connection between the local fractional
differentiability of a function and the Holder exponent/the dimension of its graph.
Another remarkable approach, viz. ‘analysis on fractals’, is extensively used

for the treatment of diffusion, heat conduction, waves, etc., on self-similar
fractals [25–28]. Harmonic analysis on fractals using measure theoretical ap-
proach [29,30] is a further wonderful development. However, a simple and direct
approach is still desired.
In [31], a new calculus (called Fα-calculus) based on fractals F ⊂ R is developed

with a Riemann-like approach for integrals. It includes formulation of integrals and
derivatives of orders α ∈ (0, 1], based on fractals F ⊂ R. These are called F α-
integrals and Fα-derivatives respectively. This formulation is more intuitive, more
direct and transparent, and has a distinct advantage from an algorithmic point
of view. The Fα-integral is best suited to integrate functions with α-dimensional
fractal supports. In particular, if F ⊂ R is a fractal of dimension α, 0 < α ≤ 1,
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Table 1. A few analogies between Fα-calculus and ordinary calculus.

Ordinary calculus Fα-calculus

R An α-perfect set F
Limit F -limit
Continuity F -continuity
∫ y

0
xn dx = 1

n+1
yn+1

∫ y

0
(SαF (x))

n dαFx = 1
n+1

(SαF (y))
n+1

d
dx
xn = nxn−1 DαF ((S

α
F (x))

n) = n (SαF (x))
n−1 χF (x)

Leibniz rule Fα-Leibniz rule
Fundamental theorems Fundamental theorems of F α-calculus
Integration by parts Rules for Fα-integration by parts
Taylor expansion ‘Fractal’ Taylor expansion

then the Fα-integral
∫ x

0
χF (y) d

α
F y of the characteristic function χF of F is the

integral staircase function Sα
F (x) which is a generalization of the Cantor staircase

function. The Fα-derivative is best suited for functions like the Cantor staircase
which ‘change’ only on a fractal. As expected, the F α-derivative of Sα

F (x) is χF (x).
In fact, staircase functions play a central role in F α-calculus: a role analogous to
that of the independent variable itself in ordinary calculus. In the definitions of
Fα-integral and Fα-derivative, the quantity (Sα

F (y)− S
α
F (x)) replaces (y − x), the

length of the interval [x, y], or the distance between x and y.
Several results in the Fα-calculus are analogous to standard results of classical

calculus such as product rule, fundamental theorems, etc. (see table 1). This is
what makes it more intuitive and transparent.
The Fα-differential equations are differential equations involving the F α-

derivatives exactly like the ordinary differential equations involving the ordinary
derivatives. Since staircase-like functions occur naturally as their solutions, F α-
differential equations offer possibilities of modeling dynamical behaviours naturally
for which ordinary differential equations and methods of ordinary calculus are in-
adequate. In this paper we consider some examples for the purpose of illustration.
Under suitable conditions, it is possible [32] to map the F α-integrals and Fα-

derivatives to ordinary integrals and derivatives of appropriately defined functions.
Indeed, as discussed in §4 with examples, and in [32], it is possible to solve certain
fractal differential equations by mapping them to ordinary differential equations
and fractalizing the solutions back.
The organization of the paper is as follows: In §2, we present a review of F α-

calculus. It includes defining mass function and staircase function, F α-integration,
and Fα-derivative. A few of the essential properties proved in [31] are stated.
Sections 3 and 4 deal with the main theme of the paper. These sections are

written in more intuitive fashion avoiding the jargon as far as possible. In §3,
we discuss some examples of Fα-differential equations. The conjugacy between
Fα-calculus and ordinary calculus developed in [32] is sketched in §4 and further
details are given in Appendix A. The use of this conjugacy in solving F α-differential
equations is illustrated in §5. Section 6 is the concluding section.
We begin by reviewing the Fα-calculus.
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2. Review of calculus on fractals

2.1 Staircase functions

In this section we take a brief review of calculus on fractal subsets of real line, or
Fα-calculus, which is developed in [31]. It involves the definitions of mass func-
tion, staircase function, Fα-integration and Fα-differentiation. Here we just state
definitions and theorems for ready reference. Detailed proofs can be found in [31].

DEFINITION 1

A subdivision P[a,b], or just P , of the interval [a, b], a < b, is a finite set of points
{a = x0, x1, . . . , xn = b}, xi < xi+1. Any interval of the form [xi, xi+1] is called a
component interval or just component of the subdivision P .

DEFINITION 2

For a set F ⊂ R and a subdivision P[a,b], a < b, the mass function γα(F, a, b) is
given by

γα(F, a, b) = lim
δ→0

inf
{P[a,b]:|P |≤δ}

n−1
∑

i=0

(xi+1 − xi)
α

Γ(α+ 1)
θ(F, [xi, xi+1]), (1)

where θ(F, [xi, xi+1]) = 1 if F ∩ [xi, xi+1] is non-empty, and zero otherwise, and

|P | = max
0≤i≤n−1

(xi+1 − xi),

the infimum being taken over all subdivisions P of [a, b] such that |P | ≤ δ.

The motivations for this definition come from fractional calculus and the con-
struction of Hausdorff measure.
Among several nice properties of the mass function [31], we particularly note the

interval-wise additivity and behaviour under scaling and translation:

1. (Interval-wise additivity). Let a < b < c and γα(F, a, c) < ∞. Then
γα(F, a, c) = γα(F, a, b) + γα(F, b, c).

2. (Translation). For F ⊂ R and λ ∈ R, let F + λ denote the set F + λ =
{x+ λ : x ∈ F}. Then, γα(F + λ, a+ λ, b+ λ) = γα(F, a, b).

3. (Scaling). For F ⊂ R and λ ≥ 0, let λF denote the set λF = {λx : x ∈ F}.
Then γα(λF, λa, λb) = λα γα(F, a, b).

DEFINITION 3

Let a0 be an arbitrary but fixed real number. The integral staircase function S
α
F (x)

of order α for a set F is given by

Sα
F (x) =

{

γα(F, a0, x) if x ≥ a0

−γα(F, x, a0) otherwise.
(2)

The number a0 can be chosen according to convenience. If γ
α(F, a, b) is finite for

a set F ⊂ R and some α ∈ (0, 1], the important properties relating the staircase
function are:
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1. Sα
F (x) is increasing in x.

2. If F ∩ (x, y) = ∅, then Sα
F is a constant in [x, y].

3. Sα
F (y)− S

α
F (x) = γα(F, x, y).

4. Sα
F is continuous on (a, b).

As an example, a staircase function corresponding to F = C for the middle 1
3

Cantor set is shown in figure 1. This is the same as the Cantor staircase function
apart from a multiplying factor.
Incidentally the mass function allows us to formulate a new definition of dimen-

sion called γ-dimension [31]. It is given by

dimγ(F ∩ [a, b]) = inf{α : γ
α(F, a, b) = 0}

= sup{α : γα(F, a, b) =∞}.

It turns out [31] that dimH(F ∩ [a, b]) ≤ dimγ(F ∩ [a, b]) ≤ dimB(F ∩ [a, b]) where
dimH and dimB denote the Hausdorff dimension and the box dimension respec-
tively. Also,

γα(F, a, b) ≥
1

Γ(α+ 1)
Hα(F ∩ [a, b]),

where Hα denotes the Hausdorff measure of order α. Further, this relation becomes
an equality of F is compact. The details are discussed in [31].

2.2 α-Perfect sets

The α-perfect sets (Definition 5) are sets having properties necessary to define F α-
derivative, and which are required also for the formulation of fundamental theorems
of Fα-calculus. The correspondence between sets and their staircase functions is
many to one. An α-perfect set is basically the representative of a class of sets giving
rise to the same staircase function and has certain desired properties.

DEFINITION 4

We say that a point x is a point of change of a function f , if f is not constant over
any open interval (c, d) containing x. The set of all points of change of f is called
the set of change of f and is denoted by Schf .

DEFINITION 5

Let F ⊂ R be such that Sα
F (x) is finite for all x ∈ R for some α ∈ (0, 1]. Then the

set Sch(Sα
F ) is said to be α-perfect.

Some facts regarding an α-perfect set H = Sch(Sα
F ) are listed below.

1. Sα
H = Sα

F .

2. If x ∈ H and y < x < z, then either Sα
H(y) < Sα

H(x) or S
α
H(x) < Sα

H(z) (or
both).

3. For any point x ∈ H, there is at the most one more point y ∈ H such that
Sα
H(x) = Sα

H(y).

4. The set H is the intersection of all closed sets giving rise to the same staircase
function Sα

F . In other words, H is the minimal closed set amongst them.
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2.3 F -limits and F -continuity

Now we summarize the notation for limits and continuity using the topology of F
with the metric inherited from R:
Let F ⊂ R, f : R → R and x ∈ F . A number ` is said to be the limit of f

through the points of F , or simply F -limit as y → x if given any ε > 0, there exists
δ > 0 such that

y ∈ F and |y − x| < δ =⇒ |f(y)− `| < ε.

If such a number exists, then it is denoted by

` = F- lim
y→x

f(y).

The notions of F -continuity and uniform F -continuity are developed on similar
lines [31].

2.4 Review of the Riemann integral on R

Since much of the calculus developed in [31] follows Riemann integral approach, we
begin by recalling the definition of the Riemann integral in ordinary calculus [33].
Let g: [a, b] → R be a bounded function. Let I ⊂ [a, b] be any closed interval and
let

M ′[g, I] = sup
x∈I

g(x)

and

m′[g, I] = inf
x∈I

g(x).

Further, for a subdivision P = {y0, . . . , yn} of [a, b], the upper and the lower sums
are defined respectively as

U ′[g, P ] =

n−1
∑

i=0

M ′[g, [yi, yi+1]](yi+1 − yi)

and

L′[g, P ] =

n−1
∑

i=0

m′[g, [yi, yi+1]](yi+1 − yi).

Now the upper and the lower Riemann integrals are defined respectively as

∫ b

a

g(y) dy = inf
P
U ′[g, P ]

and
∫ b

a

g(y) dy = sup
P
L′[g, P ],
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where the supremum and the infimum are taken over all the subdivisions P of [a, b].
The function g is said to be Riemann integrable over [a, b] if the upper and the lower
integrals are equal, and in that case the Riemann integral of g over [a, b] is defined
to be the common value.
We carry out a similar construction on (fractal) subsets of R.

2.5 Fα-integration

As mentioned earlier, the Fα-integral is suitable to integrate functions with fractal
support. The ordinary Riemann integral of such functions is usually undefined or
zero.
In what follows, the class of functions f : R → R which are bounded on F is

denoted by B(F ).
Let f ∈ B(F ). Further, let I be a closed interval. We denote two quantities M

and m:

M [f, F, I] =

{

supx∈F∩I f(x) if F ∩ I 6= ∅
0 otherwise

(3)

and similarly

m[f, F, I] =

{

infx∈F∩I f(x) if F ∩ I 6= ∅
0 otherwise.

(4)

DEFINITION 6

Let F be such that Sα
F be finite on [a, b]. For f ∈ B(F ), the lower F

α-integral is
given by

∫ b

a

f(x) dαFx = sup
P[a,b]

Lα[f, F, P ], (5)

where

Lα[f, F, P ] =
n−1
∑

i=0

m[f, F, [xi, xi+1]](S
α
F (xi+1)− S

α
F (xi)) (6)

and the upper Fα-integral is given by

∫ b

a

f(x) dαFx = inf
P[a,b]

Uα[f, F, P ], (7)

where

Uα[f, F, P ] =

n−1
∑

i=0

M [f, F, [xi, xi+1]](S
α
F (xi+1)− S

α
F (xi)), (8)

both the supremum and infimum being taken over all the subdivisions of [a, b].
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We emphasize the appearance of intersection F ∩ I in the definition of M and
m, and also the use of (Sα

F (xi+1)− S
α
F (xi)) as in a Riemann–Stieltjes sum instead

of (xi+1 − xi).

DEFINITION 7

If f ∈ B(F ), we say that f is Fα-integrable on [a, b] if

∫ b

a

f(x) dαFx =

∫ b

a

f(x) dαFx.

In that case the Fα-integral of f on [a, b], denoted by

∫ b

a

f(x) dαFx

is given by the common value.

A few properties of Fα-integral are listed below:

1. Let a < b and f be an Fα-integrable function on [a, b]. Let c ∈ (a, b). Then,
f is Fα-integrable on [a, c] and [c, b]. Further,

∫ b

a

f(x) dαFx =

∫ c

a

f(x) dαFx+

∫ b

c

f(x) dαFx. (9)

2. Fα-integration is a linear operation.

3. If χF (x) is the characteristic function of F ⊂ R, then

∫ b

a

χF (x) d
α
Fx = Sα

F (b)− S
α
F (a). (10)

This key result is analogous to the relation
∫ b

a
dx = b−a in ordinary calculus.

2.6 Fα-derivative

As mentioned earlier, the Fα-derivative is suitable to differentiate functions which
‘change’ only on a fractal (more specifically, functions f such that Schf ⊂ F ), such
as the Cantor staircase function. We note that the ordinary derivative of such a
function, at points of change of the function, does not exist and is zero almost
everywhere.

DEFINITION 8

If F is an α-perfect set then the Fα-derivative of f at x is

Dα
F (f(x)) =

{

F-limy→x
f(y)−f(x)

Sα
F

(y)−Sα
F

(x) if x ∈ F

0 otherwise
(11)

if the limit exists.

We list a few results involving the Fα-derivative:
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1. The Fα-derivative is a linear operator.

2. The Fα-derivative of a constant function f : R → R, f(x) = k ∈ R is zero,
i.e. Dα

F (f) = 0. (This is to be contrasted with the fact that the classical
fractional derivative of a constant is not necessarily zero.)

3. The derivative of the integral staircase itself is the characteristic function χF

of F :

Dα
F (S

α
F (x)) = χF (x). (12)

This is a key relation.

4. (First fundamental theorem of Fα-calculus). Let F ⊂ R be an α-perfect set.
If f ∈ B(F ) is an F -continuous function on F ∩ [a, b], and

g(x) =

∫ x

a

f(y) dαF y

for all x ∈ [a, b], then

Dα
F (g(x)) = f(x)χF (x),

where χF (x) is the characteristic function of the set F .

5. (Second fundamental theorem of Fα-calculus). Let f : R→ R be a continu-
ous, Fα-differentiable function such that Sch(f) is contained in an α-perfect
set F and h: R→ R be F -continuous, such that

h(x)χF (x) = D
α
F (f(x)).

Then
∫ b

a

h(x) dαFx = f(b)− f(a).

6. ‘Fractal’ Taylor series: Under the conditions of F α-differentiability and some
others [32], a function h has a Taylor series expansion:

h(w) =

∞
∑

n=0

(Sα
F (w)− S

α
F (x))

n

n!
(Dα

F )
nh(x). (13)

The Fα-calculus also has analogues of Rolle’s theorem, the law of the mean,
Leibniz rule and integration by parts [31].
A few analogies between Fα-calculus and ordinary calculus are listed in table 1.

3. Fractal (Fα-) differential equations

The Fα-differential equations are differential equations involving the F α-
derivatives. A few simple examples are considered in [31] and [32]. They offer
possibilities of modeling dynamical behaviours for which ordinary differential equa-
tions and methods of ordinary calculus are inadequate. We consider some examples
for the purpose of illustration here.
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1. The equation

Dα
F y(t) = χF (t)

has solution y(t) = Sα
F (t) satisfying the initial condition y(t) = 0 at t = 0, in

view of (12).

2. Linear Fα-differential equation:

Dα
F,tx = χF (t)Ax,

where A is an n× n constant matrix and x ∈ Rn, has a solution

x(t) = exp(Sα
F (t)A)x0

which is analogous to the solution x(t) = exp(tA)x0 of the equation dx/dt =
Ax. We notice that a linear Fα-differential equation has solutions with sub-
linear behaviour. Thus equations like this are suitable as models in nonlinear
dynamics.

3. Fractal diffusion equation [21,31]: This equation, which was proposed and
discussed in [21,22,31], is of the form

Dα
F,t(W (x, t)) =

χF (t)

2

∂2

∂x2
W (x, t), (14)

where the density W is defined as a function of two arguments (x, t) ∈ R×R
and with a slight change of notation Dα

F,t denotes the partial F
α-derivative

with respect to time t, χF being the characteristic function of F . (This

equation may be compared with ordinary diffusion equation ∂W (x,t)
∂t =

D ∂2

∂x2W (x, t).) The exact solution is

W (x, t) =
1

(2πSα
F (t))

1/2
exp

(

−x2

2Sα
F (t)

)

, W (x, 0) = δ(x). (15)

This can be recognized as a subdiffusive solution, since Sα
F is known to be

bounded by ktα (k a constant) in simple cases including Cantor sets [34].
We further remark that such solutions are new exact solutions of Chapman–
Kolmogorov equation with appropriate transition probability [21], and they
correspond to causal and Markovian processes [12–18].

4. Friction in a fractal medium [31]: We consider one-dimensional motion of
a particle undergoing friction. First we recall the equation of motion in a
continuous (i.e. non-fractal) medium. If the frictional force is proportional to
the velocity, the equation of motion can be written as

dv

dt
= −k(x)v, (16)

where k(x), the coefficient of friction, may be dependent on the particle po-
sition x. Equation (16) can be casted in the form
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dv

dx
= −k(x) (17)

which is readily solved by integrating k(x) if k(x), which models the frictional
medium, is smooth.
If the underlying medium is fractally distributed (e.g. cloud-like), then (17)

is inadequate to model the motion. Instead we propose the F α-differential
equation of the form

Dα
F (v(x)) = −k(x) (18)

for this scenario. Here, the set F is the support of k(x) which describes the
underlying fractal medium, and α is the γ-dimension of F . The physical di-
mensions of k(x), the coefficient of friction, are fractional.
The solution of (18) is easily seen to be

v(x) = v0 −

∫ x

x0

k(x′) dαFx
′, (19)

where v0 and x0 are the initial velocity and position respectively. In a simple
case where k(x) is uniform on the fractal, i.e. k(x) = κχF (x) where κ is a
constant, (19) reduces to

v(x) = v0 − κ(S
α
F (x)− S

α
F (x0)).

In the extreme cases we obtain back the classical behaviour: (i) If F is empty
(frictionless case), then v(x) = v0; (ii) If F = R (uniform medium) then
v(x) = v0 − κ(x− x0).

5. Stretched exponential decays (see §5): The equation

Dα
Fµ(t) = −kµ(t)χF (t) (20)

has a solution

µ(t) = A exp(−kSα
F (t)) (21)

with the initial condition µ(0) = A. Details of the method to obtain the
solution are discussed in §5.

These are simple models based on Fα-differential equations. The solutions of F α-
differential equations naturally involve staircase-like functions. Staircase functions
such as the Lebesgue–Cantor staircase function are known to be bounded [34] by
sublinear power laws (btα ≤ Sα

F (t) ≤ atα). Also, they ‘change’ or ‘evolve’ only on a
fractal set. Thus, this framework may be useful in modeling many cases of sublinear
behaviour, fractal time evolution, fields due to fractal charge distributions, etc.
Continuous-time dynamical systems are associated with ordinary differen-

tial equations, and discrete-time dynamical systems are associated with maps/
diffeomorphisms. But as realized in [21], the dynamical systems associated with
Fα-differential equations are a new class of dynamical systems and correspond to
those evolving on fractal subsets of time-axis.
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4. Fractalizing and defractalizing

We begin the discussion of the conjugacy between the F α-calculus and the ordinary
calculus by considering the following simple example which helps to expose the basic
idea.
Let J = [0, 1] and C = middle 1

3 Cantor set. Then one can associate with
every point x ∈ J a point of C and vice versa by the map f : J → C which
is defined as follows. Let us represent x ∈ J by its binary representation, say
x = 0.x1x2 . . .. Thus each xi = 0 or 1. On the other hand, points of C are
represented in a base-3 representation. But since the points of C can be represented
by using the digits {0, 2} only (the digit 1 does not appear since middle third
parts are always omitted), any point of C has the form 0.y1y2 . . . where yi = 0
or 2. Let g : {0, 1} → {0, 2} so that g(0) = 0 and g(1) = 2. Then f is given by
f(x) = f(0.x1x2 . . .) = y = 0.y1y2 . . . where yi = g(xi).
The inverse map f−1 is obtained by setting f−1(y) = x = 0.x1x2 . . . where

xi = g−1(yi).
The map f : J → C may be called a fractalizing map and f−1: C → J a

defractalizing map.
Associated with such fractalizing transformations are the naturally induced maps

which take Riemann integrals in ordinary calculus to F α-integrals and ordinary
derivatives to Fα-derivatives. Conversely, maps which take F α-integrals to Rie-
mann integrals and Fα-derivatives to ordinary derivatives are associated with de-
fractalizing transformations.
Indeed these ideas can be formulated more generally and are developed in [32].

They allow us to establish a conjugacy of ordinary calculus and F α-calculus. A
brief outline is given in Appendix A for ready reference. Here we only sketch the
relavent procedure.
Let f be an Fα-integrable function over [a, b]. Denote

f1(x) =

∫ x

a

f(x′) dαFx
′, x ∈ [a, b].

By the defractalization process sketched above (and detailed in Appendix A), we
obtain a function g, also denoted by g = ψ[f ], which is Riemann integrable over
[Sα

F (a), S
α
F (b)] (see Theorem 15 in Appendix A). Further, denoting

g1(y) =

∫ y

Sα
F

(a)

g(y′) dy′, y ∈ [Sα
F (a), S

α
F (b)],

we are assured (again by Theorem 15 in Appendix A) that

g1(S
α
F (x)) = f1(x), x ∈ [a, b].

If we denote the indefinite Fα-integration operator by IαF and the indefinite Rie-
mann integration operator by I, then this can be summarized by the relation

IαF = φ−1Iψ, (22)

where φ is just a restriction of ψ to a smaller class of functions (see Appendix A).
It can be expressed by a commutative diagram as shown in figure 2.
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Figure 2. The relation between

Fα-integral and Riemann inte-

gral.

Figure 3. The relation be-

tween Fα-derivative and ordi-

nary derivative.

Similar procedure is associated with Fα-derivatives. Under certain conditions
(see Appendix A and [32]), if a function h is F α-differentiable at x, then the function
g = φ[h], obtained by defractalization, is differentiable at y = Sα

F (x) in the ordinary
sense. Further, we are assured [32] that

dg

dy

∣

∣

∣

∣

y=Sα
F

(x)

= Dα
F (h(x)).

If we denote the Fα-differentiation operator by Dα
F and the ordinary derivative

operator by D, then this relation can be summarized as

Dα
F = φ−1Dφ. (23)

It can also be expressed by a commutative diagram as shown in figure 3.
As a concrete example of using this conjugacy to calculate F α-integrals, we cal-

culate the Fα-integral of the function f(x) = exp(−x)χC(x) numerically, where C
is the middle 1

3 Cantor set and α = ln(2)/ ln(3) is its γ-dimension. Figure 4 shows
the results of the numerical calculation. Figure 4f shows the numerical difference
(IαF − φ

−1Iψ)f(x) which goes to zero as we use finer and finer subdivisions.
More interestingly these maps further provide us with a method for constructing

solutions of Fα-differential equations from known solutions of ordinary differential
equations. We now proceed to discuss such constructions.

5. Solving F
α-differential equations using the conjugacy

In this section we illustrate solving Fα-differential equations using the conjugacy,
with the help of a couple of examples.
To illustrate the procedure, we begin with a simple F α-differential equation

Dα
F y(x) = χF (x) (24)

with the initial condition y(0) = 0. Let g = φ[y] denote the defractalization of y.
It is immediate from the definition of map φ (Appendix A) that φ[χF ] = 1, the
constant function. Further,
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Figure 4. Numerical calculation of Fα-integral of exp(−x)χC(x) where C
is the middle 1

3
Cantor set. (a) The function f(x) = exp(−x)χC(x), (b) the

function g = ψ[f ] (the vertical lines indicate discontinuities), (c) indefinite
Riemann integral: g1(y) =

∫ y

0
ψ[f ](y′) dy′, (d) φ−1[g1](x), (e)

∫ x

0
f(x′) dαFx

′

calculated directly using the definition of Fα-integral, (f) the difference be-
tween (d) and (e), or equivalently the difference (IαF − φ−1Iψ)f(x), which
vanishes in the limit.
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φ[Dα
F y] =

d

dt
φ[y] =

dg

dt
.

So applying φ on both sides of (24), we get the defractalized equation

dg

dt
= 1

which has a solution

g(t) = t (25)

with the initial condition g(t = 0) = 0. Now applying φ−1 to both sides of (25), we
get

y(x) = Sα
F (x)

which can be verified to be a solution to (24).
We now present another example. It is well-known that various relaxation phe-

nomena in glassy materials, such as mechanical, dielectric or magnetic relaxation,
are fractal time processes [35]. Let µ(t) denote the corresponding quantity (such
as the polarization or magnetic moment).
We propose a model for such processes which involves F α-calculus. We assume

that Sch(µ) ⊂ F , i.e. µ(t) ‘changes’ only on a fractal subset F of time, F is α-perfect
for some α ∈ (0, 1], and the ‘fractal rate’ of change of µ(t) (i.e. the F α-derivative)
is proportional to µ(t) itself (with a negative sign). This can be written as

Dα
Fµ(t) = −kµ(t)χF (t), (26)

where k > 0 is a proportionality constant. Let y = φ[µ]. Then y(u) = µ(t) for
u = Sα

F (t). Further, by Theorem 18 in Appendix A, dy/du = D
α
Fµ(t). Therefore,

(26) transforms into the ‘defractalized’ equation

dy

du
= −ky (27)

which has a solution

y = A exp(−ku). (28)

Applying φ−1 to y, we obtain a solution of the Fα-differential equation (26):

µ(t) = A exp(−kSα
F (t)) (29)

with the initial condition µ(0) = A. This solution evolves on the fractal F . Further,
for many sets F , like the Cantor sets, it is known that Sα

F is bounded above and
below by constant multiples of tα. It is empirically known [35] that the relaxation
function defined by w(t) = 〈µ(t)µ(0)〉/〈µ2(0)〉 has the form

w(t) = exp[−(t/τ)α], 0 < α < 1. (30)

Thus, (26) is a plausible model for such processes, involving local differentiation
operator. More importantly, we have demonstrated the use of the defractalizing
map φ in obtaining its solution.
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6. Concluding remarks

Calculus on fractal subsets of real line, or F α-calculus [31], is a calculus suitable,
among other themes, to model fractal time processes, or sublinear behaviours. In
this paper, we have shown the use of the F α-calculus in formulating and solving
fractal-time differential equations.
The Fα-differential equations (of which fractal-time differential equations are

a special case) are differential equations involving the F α-derivatives exactly like
the ordinary differential equations involving the ordinary derivatives. As demon-
strated in §3–5 they offer possibilities of modeling dynamical behaviours natu-
rally for which ordinary differential equations and methods of ordinary calculus are
inadequate.
Continuous-time dynamical systems are associated with ordinary differen-

tial equations, and discrete-time dynamical systems are associated with maps/
diffeomorphisms. But the dynamical systems associated with F α-differential equa-
tions are a new class of dynamical systems [21,22,31] which evolve on fractal subsets
of time-axis.
We have discussed simple models based on F α-differential equations. The

solutions of Fα-differential equations naturally involve staircase-like functions.
Staircase functions such as the Lebesgue–Cantor staircase function are known
to be bounded by sublinear power laws. Also, they ‘change’ or ‘evolve’ only on
a fractal set. Thus, this framework may be useful in modeling many cases of sub-
linear behaviour, fractal time evolution, fields due to fractal charge distributions,
etc.
The fractalizing and defractalizing transformations, sketched in §4 and detailed

in Appendix A, induce a conjugacy between F α-integral (Fα-derivative) and Rie-
mann integral (ordinary derivative). The defractalizing transformation takes an
Fα-integrable (Fα-differentiable) function f to a Riemann integrable (ordinarily
differentiable) function g, such that the corresponding types of integrals (deriva-
tives) have equal values.
One of the important uses of this conjugacy is in solving F α-differential equa-

tions. The method of defractalizing fractal equations to obtain ordinary differential
equations, solving them and fractalizing the solution is a practical method to con-
struct solutions of fractal differential equations. This is demonstrated with the
help of an example in which we have considered a model for fractal-time relaxation
processes.
There are many interesting questions in the theme of F α-differential equations

that need to be addressed such as fractal variational principles, classification of
sublinear behaviours, multidimensional F α-calculus, Fα-differential equations in-
volving distributions, etc. Work is in progress in these directions.

Appendix A: Conjugacy between F
α-calculus and ordinary calculus

In this appendix we briefly state some results concerning relations between ordinary
calculus and Fα-calculus developed in [32].
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A.1 Conjugacy between Fα-integral and Riemann integral

First we introduce relevant classes of functions. Let F ⊂ R be an α-perfect set for
some α ∈ (0, 1]. Let [a, b] be a closed interval. Then

1. K denotes the range of Sα
F . K is of the form of a bounded or unbounded

interval.

2. B(F ) denotes the class of functions bounded on F .

3. B(K) denotes the class of functions bounded on K.

4. B̃(F ) denotes the class of functions h ∈ B(F ) such that

x1, x2 ∈ F and Sα
F (x1) = Sα

F (x2) =⇒ h(x1) = h(x2).

For example, let F ⊂ [a, b]. Then, the function f1(x) = χF (x)S
α
F (x) belongs

to B̃(F ). On the other hand, the function f2(x) = xχF (x) belongs to B(F )

but not B̃(F ).

5. F denotes the class of functions f ∈ B(F ) which are F α-integrable over [a, b].

6. H denotes the class of functions h ∈ F such that

x1, x2 ∈ F and Sα
F (x1) = Sα

F (x2) =⇒ h(x1) = h(x2),

i.e. H = F ∩ B̃(F ).

7. G denotes the class of functions in B(K) which are Riemann integrable over
the interval [Sα

F (a), S
α
F (b)].

Now we proceed to define the required maps and state the results. We begin by
defining the first defractalizing map φ.

DEFINITION 9

The map φ: B̃(F ) → B(K) takes h ∈ B̃(F ) to φ[h] ∈ B(K) such that for each
x ∈ F ,

φ[h](Sα
F (x)) = h(x).

Theorem 10. The map φ : B̃(F )→ B(K) is one-to-one and onto.

The map φ takes a function h ∈ B̃(F ) to g ∈ B(K) such that the Fα-integral of
h is equal to the Riemann integral of g on corresponding intervals (if either exists).

Theorem 11. A function h ∈ B̃(F ) is Fα-integrable over [a, b] if and only if
g = φ[h] is Riemann integrable over [Sα

F (a), S
α
F (b)]. In other words, a function

h ∈ B̃(F ) belongs to H if and only if g belongs to G. Further in that case,

∫ b

a

h(x) dαFx =

∫ SαF (b)

Sα
F

(a)

g(u) du.

As an example, consider the integral

∫ b

0

h(x) dαFx, h(x) = (Sα
F (x))

n, Sα
F (0) = 0.
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Clearly, h ∈ B̃(F ), and further, h ∈ H. Now if g = φ[h], then g(u) = un. Thus, by
Theorem 11,

∫ b

0

h(x) dαFx =

∫ SαF (b)

0

g(u) du =
1

n+ 1
(Sα

F (b))
n+1

which agrees with the result obtained in [31] using first principles.

To extend the domain of φ from B̃(F ) to B(F ), we now define an intermediate

map η which takes f ∈ B(F ) to h ∈ B̃(F ) preserving Fα-integrals.

DEFINITION 12

The map η: B(F )→ B̃(F ) is defined as

η[f ](x) =

{

min{z∈F :Sα
F

(z)=Sα
F

(x)} f(z) if x ∈ F
0 if x /∈ F .

This construction is such that for f ∈ B(F ), η[f ] is the largest function in B̃(F )
which is nowhere greater than f on F . Further, if f ∈ B̃(F ), then η[f ] = f , i.e.,

η restricted to B̃(F ) is identity. Fα-integrals are preserved under η.

Theorem 13. Let the function f ∈ B(F ) be F α-integrable over [a, b]. Then
h = η[f ] is Fα-integrable over [a, b] and

∫ b

a

f(x) dαFx =

∫ b

a

h(x) dαFx.

In other words, η preserves Fα-integrals.

Now we introduce the composite map ψ which extends the domain of φ (because

η is an identity over B̃(F )).

DEFINITION 14

The map ψ: B(F )→ B(K) is the composite map φ ◦ η.

This second defractalizing map ψ takes f ∈ B(F ) to g ∈ B(K) such that if f is
Fα-integrable, then g is Riemann integrable and the respective integrals are equal.

Theorem 15. Let f ∈ F , and let g = ψ[f ] = φ ◦ η[f ]. Then g ∈ G (i.e. it is
Riemann integrable over [Sα

F (a), S
α
F (b)]) and

∫ b

a

f(x) dαFx =

∫ SαF (b)

Sα
F

(a)

g(u) du.

A.2 Conjugacy between the Fα-derivative and the ordinary derivative

In this section, we show that the same map φ also establishes the conjugacy between
the Fα-derivative and the ordinary (first order) derivative under certain conditions.
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The next theorem enables us to calculate the F α-derivative of a function h if the
ordinary derivative of its image φ[h] is known.

Theorem 16. Let h be a function in B̃(F ) and let g = φ[h] be differentiable on

[Sα
F (a), S

α
F (b)]. Then D

α
F (h(x)) exists, belongs to B̃(F ), and

Dα
Fh(x) =

dg(t = Sα
F (x))

dt

for all x ∈ F ∩ [a, b].

As an example, let us consider the function h(x) = (Sα
F (x))

n, n = 1, 2, . . ..

Clearly, h ∈ B̃(F ). Let g = φ[h]. Then g(t) = tn. Now according to Theorem 16,
for x ∈ F ,

Dα
F (h(x)) =

dg(t = Sα
F (x))

dt
= ntn−1

∣

∣

∣

t=Sα
F

(x)
= n(Sα

F (x))
n−1.

This result agrees with the one obtained in [31] using first principles.
The next theorem enables us to express the ordinary derivative of g = φ[h]

in terms of the Fα-derivative of h. This is one step towards the converse of
Theorem 16. However, we note, intuitively, that because of the ‘fractured’ na-
ture of a typical fractal F , F -limits at some points of F correspond only to one
sided limits under φ. Therefore at such points, only one-sided ordinary derivatives
are guaranteed.

Theorem 17. Let h ∈ B̃(F ) be an Fα-differentiable function on [a, b] and let
g = φ[h].

1. If for x ∈ F there exists y ∈ F, y < x such that Sα
F (y) = Sα

F (x) (= τ, say),
then dg/dt− and dg/dt+ exist at t = Sα

F (x) and

dg(t = τ)

dt

∣

∣

∣

∣

−

= Dα
Fh(y),

and

dg(t = τ)

dt

∣

∣

∣

∣

+

= Dα
Fh(x),

where the subscripts − and + of dg/dt denote the left- and the right-handed
derivatives respectively.

2. If x ∈ F is such that for every y ∈ [a, b], y 6= x =⇒ Sα
F (y) 6= Sα

F (x), then
dg/dt exists at t = Sα

F (x) and

dg(t = Sα
F (x))

dt
= Dα

Fh(x).

For certain kinds of functions h, the left and right derivative of g = φ[h] are
always equal and therefore can be replaced by the derivative of g. Thus we come
to the converse of Theorem 16.
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Theorem 18. Let h ∈ B̃(F ) be an Fα-differentiable function on [a, b] such that

Dα
Fh ∈ B̃(F ). Let g = φ[h]. Then for all x ∈ F ∩ [a, b],

dg(t = Sα
F (x))

dt
= Dα

Fh(x). (A1)
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