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Chapter 1

Introduction: Literature Review
and Background

1.1 Background

Revolution in the DNA sequencing technology over the past decade led to phenomenal in-

crease in its throughput and cost reduction. However, the burgeoning sequencing data also led

to unprecedented set of problems for biologists. During the same period there were significant

advances in the electronics that led to increased power of computing. Today we are at a stage

where a single genome may be sequenced in a matter of few hours to few days, a task which

used to require months to years not so long ago. Additionally advances in mathematics and

statistics yielded very powerful analytical tools and techniques to deal with the large amount

of sequence data (for both DNA and proteins) generated as a result of high throughput se-

quencing techniques. The important question is then to understand what all these sequences

mean? Initial studies involving sequence analyses were focused on defining a measure of ‘sim-

ilarity’ within sequence(s) to determine their phylogeny. Moreover, current studies use these

and similar sequence alignment techniques to identify ‘common’ or homologous sequences

between various inter-/intra- genomic regions. Multiple techniques for sequence alignment

were introduced in early 90s (1). These have been improved over the years with addition from

techniques honed and perfected in diverse fields of science (2, 3, 4). Techniques from diverse

disciplines such as the Language theory are also being applied to biological sequence analysis

problems (5). Furthermore, inside a cell the functional state of the genome is in form of an

orderly nucleoprotein complex called the chromatin (6). The genomic DNA and DNA-bound

histones form a major component of this chromatin, in addition to chromatin remodeling

1



1.2. CHALLENGES

complexes and various non-histone DNA binding proteins. The hierarchical packaging of

chromatin poses an interesting question regarding the features/information in the primary

genomic sequence that act as a driving force for the compact assembly of chromatin.

In addition to the genomic sequence itself, plethora of information about the transcrip-

tome1, and the proteome2 was also generated. This led to new disciplines of studies that is

collectively known as omics.

In this chapter we discuss the established and current computational methodologies for

analysis of the genomic sequences and their functional elements. We briefly discuss a few

areas of contemporary interest, and various computational techniques used in these studies.

1.2 Challenges

With more and more genomes being sequenced, one of the biggest challenges was and contin-

ues even today, to be annotation of the genome(s). The genomic DNA sequence is basically

(nearly) an endless string(s) of letters A, C, G, and T. Although it is widely accepted that

genomic sequence features regulate gene expression, delineating these features is a very com-

plicated problem. As a further complication to the problem, most of the higher eukaryotic

genomes are made up of a number of repetitive elements which makes it very difficult to

interpret results based on statistical analysis of DNA sequences. These repeats can lead to

number of false positive and false negative results.

Multiple Sequence Alignment The first question is usually identification of the organism

of origin for the DNA under study. This question is especially pertinent when the origin of

the DNA is not a well defined source. To this end, traditionally a multiple sequence alignment

approach is used. One of the earliest approaches for comparison of two sequences was the

FASTA algorithm (1). These techniques are used most commonly in the study of flora

(bacterial population) of unknown environments. The most common method to answer the

question of organism of origin of the DNA under investigation is to align the obtained (test)

sequence with known sequences. Depending on the distance of the unknown sequence from

sequences with known origin a fair estimate can be made about the origin of the unknown
1Complete RNA complement of a given genome
2Complete protein complement of a given genome

2



1.2. CHALLENGES

sequence. Such methods usually involve some sort of multiple sequence alignment. Multiple

sequence alignment usually means global alignment wherein the algorithm tries to match

the entire length of the query sequence (the unknown sequence) with entire length of the

target sequence (the known sequence(s)). This is achieved by adding gaps to either of the

sequence(s) as required. However, over the years better algorithms have been designed to

increase the speed and efficiency of global sequence comparisons. One of the most well known

of these algorithms is the CLUSTAL (2). Over number of years the sequence comparison

algorithms have evolved, such that today we have a wide choice for programs/algorithms for

multiple sequence alignment. Following programs are well known and widely used, MAFFT

(7), T Coffee (3), MUSCLE (8), DIALIGN-T (4), etc. Most of the improvements have been

in efficiency. Moreover, with widespread availability of the World Wide Web (Internet),

increasing number of sequence analysis platforms are available online.

Motif Detection Over a number of years, motif detection has attracted a lot of attention.

Motif detection is carried out in nucleic acid (DNA and RNA) as well as the amino acid

(Protein) sequences. In both cases, the aim of motif detection is to arrive at a continuous

conserved sub-sequence amongst the given set of sequences. Most of the motif detection

algorithms were originally written for protein sequences with which they yield more reliable

results due to a long alphabet (20 amino acids). However, the algorithms have now been

adapted to use nucleic acid sequences as inputs.

The motif detection algorithms can be classified as either enumerative or probabilistic.

The enumerative method is a thorough method wherein all possible combinations of a se-

quence of given length are generated, and score is assigned to each combination. Each such

occurrence is counted and most occurring sub-sequence is considered to be a motif. One

of well known example of enumerative algorithm for motif detection is weeder, and its web

implementation (9).

In probabilistic method(s), each position in a motif is considered. At the start of anal-

ysis, each position is assigned equal probability of having any amino acid/base. With each

subsequent occurrence of that n-mer, these probabilities are re-calculated and reassigned so

that the score for a particular base (in DNA and RNA)/acid (amino- acids of proteins) varies

according to the probability of its occurrence. The end result is generation of a position

3



1.2. CHALLENGES

specific probability matrix (PSPM) (see page 85 for further explanation). One of the well

known and widely used probabilistic algorithm is the MEME, (10).

Using enumerative motif finding algorithms becomes computationally untenable as the

length of the motif increases. This is especially true if the motif detection is being carried out

for protein sequences. The possibilities in the nucleic acid sequences increase with a factor

of 4n where n is the length of the motif. Moreover for proteins the possible combinations

increase with factor of 20n. For detecting a motif of length 8 – 10 the possible number of

combinations already approach figures that are computationally untenable even for high-end

super computers. In such cases probabilistic motif detection algorithms are preferred.

The probabilistic methods can generate a high number of false positive and false negative

results. To circumvent this problem it is usually advised that multiple algorithms be used

on a given data set and also that same algorithm be used multiple times (11, 12). It also

depends heavily on the statistical tests employed to determine whether a detected motif is

really statistically significant or not. This particular problem is further exacerbated because

the genomes are replete with various repetitive elements such as the LINES, SINES and Alu-

repeats. Additionally, genome is a multi-hierarchical complex structure with numerous long-

range and short-range correlations that affect interpretation of the results (13). A few tools

are available today to detect such long-range correlations and to emulate them in generated

sequences such that a valid question about the significance of motifs may be posed (14). For

an excellent comparison of the various methodologies and tools available for motif detection,

refer to Tompa et al. (15). Similarly, Hu et al. have discussed limitations and potentials of

the available motif discovery algorithms (16) and also proposed an ensemble algorithm (17)

for motif detection.

Probabilistic Motif Detection As mentioned earlier, in probabilistic motif detection we

usually generate a PWM (Position Weight Matrix). In a particular case of transcription

factor binding site detection the PWM is generated using data from known binding sites

for a given transcription factor. The effectiveness of this approach depends on the models

ability to accurately formalize the regularities found in the confirmed sites (18, 19). However,

this approach relies on two strong assumptions, viz., a) all the positions within a site are

4
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independent, and b) all the binding sites of a transcription factor are variations of the same

sequence, these assumptions are not easily satisfied.

Whole Systems Biology (Systems Biology) As the volume of biological information

is increasing, so is the awareness of looking at the information from multiple perspectives.

Investigations focused at understanding the entire system rather than what happens to a

single gene/protein are undertaken by many laboratories. This approach is broadly known as

“Systems Biology”. For an excellent disposition on the definition of systems biology see the

commentary by Kirschner (20). Traditional approach of a biologist usually involves reduction

of the system to its components. Thus, one usually selects a gene of interest and digs around

that gene, until total effect of that gene on the organism/system under study is elucidated. In

the systems biology approach, whole organism/pathway/biological phenomenon is studied as

a single system, with internal connections. The basic premise of systems biology is functional

value of a system is greater than the sum of its parts. These approaches are especially

relevant in todays post-genomic era3. Moreover, it is now generally accepted that viewing

‘data’ (genome sequence and its features and annotations) from multiple perspectives gives

better insights and understanding of the biological processes that they affect.

These approaches are especially necessary and important in data analyses of the microar-

ray (high throughput gene expression profiling studies), ChIP-on-chip (CoC) (genome-wide

binding studies) etc. One of the most important aim of such studies is reconstruction of the

Transcription Regulatory Networks (TRN)s.

Briefly, in microarray experiments, cDNA from experimental and test samples are labeled

with different dyes, and hybridized to slides with DNA fragments corresponding to known,

predicted and hypothesized genes. Depending on the intensities of the different dyes, an

inference can be made about overexpression/repression of several thousand genes at a time.

Analyzing such data can show internal-correlations and/or anti-correlations in the expres-

sion patterns of multiple genes for a given treatment (test). In the CoC experiments, the

chromatin is cross-linked inside the cells under control and test conditions. A chromatin

iimmunoprecipitationn (ChIP) is performed using antibodies against a protein of interest.
3Generally the time when the cost and time for genome sequencing have reduced significantly and it is well

within reach for many laboratories to in principle have multiple genomes sequenced.
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After reversing the cross-links in these different samples, the DNA is labeled with different

colors, and hybridized to slides spotted with representative DNA from various areas of the

target genome. The readout directly represents the occupancy of a given region of DNA by

protein of interest under different conditions. Both gene expression profiling experiments and

CoC experiments are popularly known as “high throughput” analyses.

As the whole system is studied the complexity of these problems is immense. So the

workers have tried to break the problems into manageable small systems. Lee et al. have

studied the protein-protein interactions in the Saccharomyces cereviseae, and demonstrated

the emergence of the TRNs through the studies of these interactions (21).

Recent Advances With huge advances in the computer sciences, technological innovations

in the fields of electronics and computer building, better and powerful computers are available

for lesser cost. Simultaneously, more and more researchers from across the disciplines have

been able to contribute analysis techniques honed and matured in their respective branches

of science to analyze biological data. People have applied well known techniques such as

Simulated Annealing, Support Vector Machines, Genetic Algorithms, Neural Networks, for

predicting of patterns in the biological data (22, 23, 24). More specifically Aerts et al. have

used these techniques to decipher cis-regulatory motifs (25, 26). Recently various techniques

from the Language Theory have also been used to study, detect, and analyze patterns in

biological data (27, 28, 5).

Furthermore, meta-data4 analysis is also gaining root in high throughput experiments such

as the gene expression microarray, ChIP-on-chip etc. A few well known commercial software

programs available to perform analyses of such high throughput data are Bibliosphere5

and LitInspector available at the GenoMatix6. Few open source programs and application

interfaces to query the meta-data databases, like BioConductor a software suite written in

and for the R7 open-source statistical environment. Similarly there are modules in BioPerl8

that allow querying of GO databases9.
4Meta-data is the data which is available over and above the sequence itself. It may include genomic

location, presence of genes/transcripts, putative regulatory sequences etc.
5Bibliosphere is now available for free use but is not open sourced
6http://genomatix.org
7http://cran.r-project.org
8http://bioperl.org
9GO (Gene Ontology) database is a functional annotation database for the known and predicted genes.
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1.3 Case Studies

We illustrate the use of the sequence analysis through following case studies.

1.3.1 Cis regulatory motif/module detection

The problem of coordinated regulation of gene expression has intrigued biologists for many

decades (29). Promoters have a known biological function10 and this property makes these

class of sequence motifs very interesting. Moreover, the promoters themselves also have an

inherent ability to regulate expression of genes (30). One of the foremost large scale stud-

ies was carried to determine putative promoter elements in the human genome (16). The

Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic

PolII promoters, experimentally defined by a transcription start site (TSS). Access to pro-

moter sequences is provided by pointers to positions in the corresponding genomes. Promoter

evidence comes from conventional TSS mapping experiments for individual genes, or, from

mass genome annotation projects (31).

Various approaches have been taken to study these special sequences (32, 33). It should

be noted however, that there are no well-known properties of the regulatory regions, like

the coding regions. Further, these regulatory regions are not distributed in the genome in

uniform fashion, neither are they distributed randomly (34). There is no regular spatial

distribution. The consensus regulatory elements are degenerate more often than not, which

makes delineation of the exact consensus difficult or impossible.

In higher eukaryotes like mammals, the regulatory regions can be divided into two general

categories. The proximal regulatory regions e.g. promoters are typically near the 5′ end of a

gene. The distal cis-regulatory modules (CRM)s include the enhancers. The CRMs may be

located far upstream, within or downstream of a gene. These are difficult to identify because

they do not necessarily have any specific location with respect to the transcription start site.

Following are the biological phenomena (35) which necessitate use of high performance

computing to address the problems of detection of TRNs and understanding biology, viz.,

10The promoters usually act as the primary docking site for the PolII. However, there is still no consensus
about the positioning of the promoter for all the genes. Usually -1 to -1000 from the TSS (Transcription Start
Site) is considered to be the basal promoter
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• multiple transcription factors (TF)s tend to regulate gene activity in distinct regulatory

modules

• individual TFs usually have multiple binding sites within a regulatory module

• binding sites within a regulatory module tend to be spatially clustered

Moreover, mere presence of Transcription Factor Binding Site (TFBS) at a particular up-

stream region does not necessarily mean that the TF is actually bound there. Hu et al. have

clearly shown that there is a difference between binding of a TF to the target site and effect

of the bound TF on expression (36). All the studies of the regulatory code of the genome

should therefore be seen in this light (37, 38).

In general the methodology for the the determination of conserved cis-regulatory mod-

ules involves analysis of the genomic DNA. The sequences under study are usually selected

based on their affinity for the transcription factor of choice. In not so distant past, EMSA

(Electrophoretic Mobility Shift Assay) used to be technique of choice for determining the tar-

get sites of the DNA binding proteins. ChIP (Chromatin immunoprecipitation) allows high

throughput screening of the regions that bind specifically to the protein of interest. Addition-

ally, techniques such as SELEX (systematic evolution of ligands by exponential enrichment)

(39), that afford a high throughput and high affinity assay for selection of the protein-binding

DNA sequences. SELEX in particular is now preferred to arrive at specific protein binding

DNA sequences on account of its relative ease of use and ability to screen very large number

of putative protein binding sequences. However, SELEX suffers from a disadvantage; the

sequences obtained from these are good binders, but it is difficult to compare their relative

affinities.

It should be noted however, that statistical computational recognition of regulatory re-

gions is desirable but very difficult. Following factors contribute to complexity of the problem,

rendering it nearly untenable, viz.,

• Lack of known properties, like open reading frames, non-uniform codon usage in coding

sequences.

• Degeneracy of the TFBS, and small length of the consensus binding site, making it

difficult to accurately detect these sites.
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• Complicated and non-regular structure of the regulatory regions. There are no consis-

tent sequence motifs in the regulatory regions. These regions comprise a collection of

diverse TFBS.

One of the latest and model studies to determine the cis-regulatory modules has been by

Hu et al. (36). The overall scheme followed in the study was defined earlier by Lee et al.

(21). For the first time a panel of knock-out yeast strains wherein each strain lacked a specific

transcription factor were used together for the expression microarray analysis as well as ChIP-

on-chip studies. The study shows that there is more to regulation of the gene-expression by

TFs than mere binding and clearly discriminates between these two phenomena, and in

the process enables building of better models for the re-construction of the transcriptional

regulatory networks.

Some of the computational approaches to solve this problem will be discussed here. The

most common methods employed to this end are use of known TFBS, use of information

from the DNA sequence itself (content based methods) and more recently the phylogenetic

foot-printing.

Use of Known TFBS One of the most well known sources for TFBS is the TRANSFAC

database (40). The TRANSFAC database contains known consensus binding sites for the TFs,

position-weight matrix (PWM)11. The PWM is basically representation of the TFBS, giving

probability of each nucleotide at each position. This representation takes care of the ‘de-

generacy of the consensus TFBS. Looking for presence of such TFBS is one of the simplest

approaches to arrive at a rudimentary transcription regulatory network (TRN). However,

this simplistic model of one transcription factor to one gene does not depict the immense

complexity of the TRNs, inside a living cell/organism. This simplistic model is enhanced by

addition of constraints and/or parameters such that the model closely resembles the real sys-

tem. It should be noted here that on account of the complexity of the biological systems, and

the TRNs inside a living cell, many times it is impossible to replicate the entire complexity

of a living system (cell) in the models. Once such parameter added is that of the distance

between the transcription factor binding sites (41). Such a model may be further tuned to
11For discussion on Position Specific Probability Matrix (PSPM) a variant of PWM see Chapter 3
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take into account occurrence of pairs of TFs or more TFs together, i.e. composite elements

(42). Another method PEAKS that works from first principles is proposed by Bellora et al.

(43). This method utilizes the information about the genomic landmarks like the Transcrip-

tion Start Site (TSS), and the genomic sequences around such a landmark to show presence

of specific TFBS. This approach however suffers from the fact that the CRMs are not nec-

essarily clustered around the genomic landmarks. On the contrary there is ample literature

available wherein the CRMs have been seen to be present far upstream or far downstream of

the TSS.

Content Based These methods rely on detection of the differences in the base-composition

of the regulatory and the non-regulatory regions. These are the most popular methods for

discovery of new motifs. Ohler et al. (44) describes use of Interpolated Markov Chains for

promoter detection. The same group has also used physical properties of the DNA sequences

and information derived from the sequence itself to predict promoter sequences (45). Local

word (8 mer) frequencies were used to determine CRM in Drosophila melanogaster develop-

mental genes (46). Narlikar et al. have shown that combining known information about the

sequence with application motif finding algorithms improves the efficiency and accuracy of

the motif finding algorithms (47). Orlov et al. have used statistical measures of structure

of genomic sequences: entropy, complexity, and position information for elucidation of pro-

moter sequences and other CRMs from genomic sequences (48). Thus it may be seen that it

is possible to use information from the DNA sequence itself to arrive at CRMs.

Phylogenetic Footprinting Another well known approach is based on recognition of the

regulatory DNA based on evolutionary conservation. This is known as phylogenetic foot-

printing (49, 50). Phylogenetic footprinting is an approach to find functionally important

sequences in the genome that relies on detecting their high degrees of conservation across

species (51). Mutations are more likely to be disruptive if they appear in functional sites, re-

sulting in a measurable difference in rates of evolution between functional and non-functional

genomic segments (52). It should be noted that for biological function of the TF inside a

cell it depends on many additional factors than presence of mere binding site(s). Lenhard

et al. (52) describe a software tool to identify conserved regulatory elements by comparative
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genome analysis. This approach has been successfully utilized by Allenede et al. (53), to

detect enhancers across multiple species. An algorithm that uses ChIP-on-chip data and the

phylogenetic foot-printing has been discussed which can use data sets from various species

to arrive at a regulatory sequence (54). Nimawegen described the mathematical and statis-

tical framework for integrating various motif/module finding algorithms and discussed the

phylogenetic footprinting methods (55). It may be reasoned that use of multiple algorithms

for elucidation of regulatory motifs/modules will provide a better confidence on the deduced

motifs (56, 57). As shown by Shi et al. (58), when multiple methodologies are combined

with data from multiple species, more confidence can be allotted to the detected motifs.

Moreover, with addition of the GO (Gene Ontology) (59) search terms some insight can be

obtained about the role these motifs play in regulation of transcription. This is one of the

methods that allows de novo identification of regulatory regions from genomic sequences.

This method depends heavily on alignment-like algorithms and hence its accuracy depends

on the evolutionary distance of the species being compared. Further, this approach offers

little information about the specific functions of the conserved sequences. Moreover, there

is no consensus opinion for the number of sequences required to reliably extract regulatory

region(s).

Summary It should be noted that the genomic sequence carries signals needed for function

over and above the regulation of gene expression such as the large-scale chromatin remodeling

and all these signals are essentially superimposed on one another. Furthermore, in all these

methods especially the probabilistic methods for determination of the CRMs there is always

a necessity for presence of control sequences. Usually these control sequences are obtained

by in silico generation of the DNA sequences based on certain rules. These rules are usually

derived from the sequences under study. The basic assumption for generating these sequences

is that the DNA sequence is identical and independent distribution (iid) of the nucleotides.

This assumption may not always hold true. For a detailed discussion about this topic of

generating proper control datasets refer to chapter 3.
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Figure 1.1: Cartoon of the DNA wound around nucleosome particle.

Figure 1.2: Nucleosome Crystal Structure (adopted from Luger et al. (61)).

1.3.2 Nucleosome Positioning

What is a Nucleosome? A nucleosome is the basic subunit of the chromatin. The nucle-

osome is fundamental to DNA coiling and gene regulation. It serves as a basis for chromatin

condensation. The primary event in gene activation may be the modification of histones

and the resulting decondensation of large chromosomal domains (60). Nucleosomal DNA in

Saccharomyces cereviseae is 165 bp long, of which 146 bp wrap around the histone octamer

in 1.65 turns. The histone octamer is composed of two copies of each histone H2A, H2B, H3,

and H4 has been highly conserved throughout evolution (61). Genomic DNA sequences show

considerable variability in their binding affinity to the histone octamer, and this variability

contributes to determining the location and distribution of nucleosomes (62, 63).

Wrapping of DNA into a nucleosome influences transcription factor binding to its cog-

nate sites, and thus the positions of nucleosomes in eukaryotic genomes contribute to gene
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regulation (64). The genomic DNA wrapped around the nucleosomes gives the “beads on a

string” appearance to the chromatin. In Figure 1.1, the puck shaped white cylinders are the

histone cores. The black string around the histone cores in the nucleosomal DNA which is in

contact with the histone cores, and the grey DNA is the linker DNA.

The high resolution crystal structure for the nucleosome core particle was solved in 1997

by Luger et al. (61). The histone tails in Figure 1.2 are denoted by dashed lines of appropriate

length and the lollipops denote the known modifications of the tails. The crystal structure

of the nucleosome core particle revealed the details of the histone-DNA interaction(s) (61).

These interactions are confined to the phosphodiester backbones of the DNA strands. A set

of contacts is made every 10 base pairs where the minor groove on the double helix faces

inwards. Electrostatic interactions and hydrogen bonding with the DNA phosphates as well

as nonpolar contacts with the deoxyribose groups are observed (61, 60).

The tails of the histones extend well outside the core-complex itself and are important

for the functioning of the nucleosome in transcription regulation. From the literature, the

nucleosome may be described as follows,

• A nucleosome may be defined as a histone octamer made up of two copies each of H2A,

H2B, H3, and H4, with DNA wound on the outside.

• Each histone is organized into two domains: a central fold, which lies within and

constrains the DNA superhelix, contributing to the compact core of the nucleosome;

and an unstructured amino-terminal tail, which extends outside the core and provides

a basis for interaction and regulation.

• A chain of nucleosomes is coiled in a chromatin fiber through interactions of the histone

tails with adjacent nucleosomes and additional proteins; these interactions may be

modulated by post-translational covalent modification(s) of the tails.

• Chromatin-remodeling complexes clear nucleosomes from enhancers, promoters, and

other specific protein-binding sites in chromatin.

• Many DNA-binding regulatory proteins repress transcription by recruiting histone acetyl-

transferases or deacetylases, which act on nearby nucleosomes.

• Stable repression of transcription by the formation of heterochromatin is based on the
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nucleosome. Interaction of histone tails with silencing proteins starts at special sites and

spreads along the chromosome to form repressive structure that may persist through

many cell generations.

Thastrom et al. (65) have studied and highlighted the nucleosomal locations on known DNA

sequence with high affinity for formation of nucleosome. Their studies revealed that of the

147 bases that are wrapped around the histone core, the central 71 bases are most important.

These make contact with the H3-H4 dimer whereas the flanking 38 bases make contact with

the H2 histones. The free energies of all these interactions play role in the stability of

the nucleosome and its positioning. Recently it has been shown that there is stretching

and kinking of the DNA as it wraps around the nucleosome core particle (66). Recently

high-throughput techniques like ChIP-seq have also been used to determine architecture of

nucleosome in terms of histone variants (67).

For in-depth discussion of structure of the nucleosomes please refer to Kornberg and Lorch

(60) and other reviews (68, 69, 70, 71).

Role of Nucleosomes There is ample evidence to show that nucleosomes inhibit tran-

scription. It is therefore believed that the nucleosomes limit access to the DNA, whereas

the access to the intervening linker DNA is more relaxed. In 1989 Csordas proposed an

interesting hypothesis as follows (72),

Introns were used in course of evolution for the organization of eukaryotic genes within re-

peating units of nucleosomes, since the distinct DNA conformations of the nucleosome core

particle and of the linker region, respectively, represent a constraint for the positioning of

genes.

It has also been shown that nucleosomes can act as activators or repressors to the gene in

vicinity, depending on the which cognate sites are available for binding to the transcription

factors. White et al. (73) have shown that in the yeast minor sequence variations lead

to dramatic changes in the way in which nucleosomes pack against each other. This has

important implications for our understanding of the formation of higher order chromatin

structure and its modulation by post-translational modifications. Yuan et al. have shown

that at least in yeast functional transcription factor binding sites were found in the linker
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region (74). Moreover, they also found that depletion of nucleosomes in the transcription

start sites is seen in many yeast promoters (74). Pryciak & Varmus (75) have shown that

sequences that favor nucleosomes also favor integration of HIV PIC. In the same study it

was shown that the chromatin organization at PolII promoters consists of a nucleosome-free

region approximately 200 base pairs upstream of the start codon flanked on both sides by po-

sitioned nucleosomes. Further, nucleosome-free sequences were evolutionarily conserved and

were enriched in poly-deoxyadenosine or poly-deoxythymidine sequences and most occupied

transcription factor binding motifs were devoid of nucleosomes, strongly suggesting that nu-

cleosome positioning is a global determinant of transcription factor access (74). Davey et al.

(76) have studied the nucleosome positioning signals in the mouse and human H19 imprinting

control region(s) (ICR). Senkinger et al. (77), have shown that nucleosomes occupy DNA

and mask fortuitous TF binding sites in the genome. It has been shown recently that the

nucleosomes regulate chromatin compaction thus play important role in repression of gene

expression (78). Similarly, Gutirrez et al. have shown that during activation of chromatin

the chromatin remodeling factors SWI/SNF evict nucleosomes and enable the TFs to access

the DNA (79).

It thus appears that nucleosome(s) and any changes to the DNA sequences targeted

preferentially by the nucleosome(s), have a profound effect on the regulation of transcription.

Sequence Determinants of Nucleosome Positioning Physical basis for nucleosome

friendly DNA sequences has been known (80). Nucleosome positioning for the most part

takes advantage of the intrinsic structural mechanics of the double helix. Moreover, the

DNA duplex has a tendency to bend towards the minor or the major groove (roll) much

more easily than in a direction along the longer base-pair axis (tilt). In the nucleosomal DNA

there is even greater preference for roll over tilt . The roll in nucleosomal DNA contributes

to smooth bending into either groove and to kinking into the minor groove (81, 82). Kinking

is almost never seen in other protein-DNA complexes (83). The kinking in the minor groove

is almost exclusively seen at the CA•TG border steps (83). Furthermore, it is known that

CA•TG steps have a preference for low-roll/high-twist in a YCAR12 context (84), and

most nucleosomal CA•TG steps with negative roll values are preceded by a pyrimidine and
12Y represents a pyrimidine and R a purine
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followed by a purine. A strong anti-correlation between twistand roll has been observed earlier

(85, 86). Sequence-specific constraints of the sugar phosphate backbone contribute primarily

to the conformational variability of protein-bound DNA. In particular the roll angles in

CA•TG steps cover a span of more than 40 degrees (from -21 degrees to +23 degrees). This

remarkable variability allows CA•TG to act as ‘hinge’ and allow them to be on the “inside”

or “outside” of a nucleosome core. During the protein-DNA interaction, especially with

TFs, most of the free energy contribution comes from specific interactions between protein

side-chains and DNA bases. For such bindings the protein has to accommodate structural

properties of only a limited number of nucleotides, and YR dimers have been selected over

course of evolution as most frequent sequence elements to “fit” DNA around the protein

because of their unique conformational properties (87, 83). When a TF binds to DNA in

sequence specific manner, the interaction is very localized, as the recognition site is short.

This is achieved efficiently within a small portion of conformational space available to the

positive roll angles possible with YR dimers (87, 83). In contrast, the nucleosome core has

to wrap a longer piece of DNA regardless of its sequence. This is a “global” optimization

problem and a large conformational variability has to be explored in the DNA to achieve

minimum free energy for the binding. Part of the solution is similar utilization of high

roll angles of the YR dimers. However, nucleosomal DNA has certain characteristics that are

only partially employed in B-DNA oligomers and specific protein-DNA complexes: (1) Higher

overall flexibility of all dinucleotides; (2) extremely tight coupling of twistand rollangles; (3)

negative roll angles in CA•TG steps. Stein & Bina have shown with elaborate experiments

that VWG13 sequences with 10 base periodicity serve as powerful nucleosome positioning

signals (88).

It has been shown that nucleosomes are not distributed statistically uniformly or stochas-

tically on DNA but rather are organized in specific arrangements that have been implicated

in mechanisms controlling gene expression (89, 90). For reading more on crystallographic

studies of oligonucleotide sequences please read (91, 92). Bendable DNA is favorable se-

quence whereas stiff DNA is unfavorable sequence for nucleosome formation. Ioshikhes et al.

(93) have shown that there are indeed specific base preferences as specific positions in the
13V means any nucleotide other than T, W means A or T
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nucleosomal DNA. Pazin et al. have shown that nucleosomes are dynamic and mobile rather

than static and that a DNA binding factor is continuously required for the maintenance of

nucleosome positioning (94). The mechanism of nucleosome positioning and its functional

consequences have been discussed extensively (95, 96).

Specifically, the AA and TT dinucleotide as specific positions enhance binding of the DNA

sequence to the nucleosome core. Lowry & Widom have elucidated sequence rules of natural

nucleosomal DNA with a strong statistical significance (97). It is known that poly-A regions

are stiff and are not good targets for nucleosome formation. On the other hand, sequences

containing AT dinucleotides are easy to bend and sequences containing AT dinucleotides with

10-base periodicity have high affinities for the histone octamers. Thastrom et al. (98) have

shown that different dinucleotides have different free energies for binding to nucleosome core.

Their analysis shows special significance for nucleosome positioning of a motif consisting of

approximately 10 bp periodic placement of TA dinucleotide steps. They further show that

contributions to histone binding and nucleosome formation from periodic TA steps are more

significant than those from other periodic steps such as AA (=TT), CC (=GG) are more

important than those from the other YR steps (CA (=TG) and CG), which are reported to

have greater conformational flexibility in protein-DNA complexes even than TA (98).

Yuan et al. (74) have identified genomic nucleosome positioning sites in the entire chro-

mosome III of the yeast Saccharomyces cereviseae. Fernandez & Anderson (99) have shown

that local DNA structures are important for positioning and that single base-pair changes

at nucleosome formation sites could have profound effects on those genomic functions that

depend on ordered nucleosomes. Moreover, it has also been shown that specific dinucleotides

are important for nucleosome positioning. Similarly, recently Segal et al. have proposed a

genomic code for nucleosome positioning (100).

Protein Determinants of Nucleosome Positioning It should be noted that in addition

to the genomic sequences some proteins also pay an important role in the assembly of nucleo-

somes. Nucleosomes are positioned during the replication-coupled (RC) nucleosome assembly

by the chromatin assembly factor 1 (CAF1) chaperone complex, which is tethered to the repli-

cation processivity clamp (PCNA) (101). Further, the positioning sequences only contribute

to the probability that a site will be occupied by the nucleosomes, the actual maintenance of
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the nucleosome at a position is however dictated by the action of DNA-binding proteins and

nucleosome-remodeling complexes (64). It is known that RC coupled nucleosome assembly

is brought about by CAF1, and is sequence independent (102). Nucleosome positions and

stability are also affected by presence of the H1 linker histone (103, 104). Studies have also

assigned anti-silencing function protein 1 (Asf1) an important role in nucleosome assembly.

It forms a complex with H3–H4 (105). A proposed role of Asf1 in nucleosome is discussed in

detail by Henikoff (106). In yeast it has been demonstrated that the Asf1 and acetylation of

H3K56 has a direct role in RC coupled nucleosome assembly and dis-assembly (107).

The nucleosome structure and function also changes according to the nature of histones

incorporated. Most of the core histones have variants and these variants are usually associated

with specific functions in the cells. Furthermore, different histone chaperones and nucleosome

assembly pathways are associated with different histone variants (106). For the effect of

variant H3.3 on epigenetic inheritance of active chromatin see page 19. For a discussion of

epigenetic modifications of the nucleosome-histones please see page 20.

Computational Determination of Nucleosome Formation Potential As mentioned

earlier, nucleosome positioning plays a very important role in the transcription regulation.

Moreover, there are definite sequence signature(s) in the genome, which affect positioning

of the nucleosome and hence affect regulation of transcription, directly or indirectly. Thus

these sequences assume a regulatory role in addition to the promoters, enhancers, silencers,

and other cis-regulatory sequences. As such it has been of considerable interest to be able

to harness the computing power to predict such nucleosome positioning sequences. Such

attempts have been scant. Most interesting studies in this direction have been by Levitsky

et al. (108, 109). They used various algorithms to arrive at nucleosome formation potential.

Moreover, they also studied the differences between the nucleosome formation potential of

the house keeping genes vis-a-vis the tissue specifically expressed genes and demonstrated

that promoters governing the expression of these to groups of genes are indeed different in

terms of the nucleosome formation potential (108). Peckham et al. (110) used Support

Vector Machines for prediction of the genomic sequences with high nucleosome formation

potential. They used a training dataset from Segal et al. (100) with nucleosome promoting

and inhibiting sequences. The algorithm arrived at the periodicity that is known to be
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present in the nucleosome forming sequences. They successfully demonstrated that genomes

encode an intrinsic nucleosome organization and that this intrinsic organization can explain

approximately 50% of the in vivo nucleosome positions. Furthermore, they also concluded

that this nucleosome positioning code may facilitate specific chromatin functions including

transcription factor binding, transcription initiation and even remodeling of the nucleosomes

themselves (110).

Summary It is thus clear from the wealth of literature available that nucleosome is a fun-

damental unit of chromatin organization. It has a unique structure and affinity to bind with

DNA. Moreover, depending on the sequence and physical properties like bendability of the

DNA the affinity of nucleosome core for binding with DNA changes. In particular TA steps14

are important nucleotides that favor formation and maintenance of the nucleosomes. Rules

have been elucidated from the sequences that promote and inhibit nucleosome formation,

especially in the yeast genome. The presence of the nucleosomes affect chromatin structure,

access of the transcriptional machinery to the DNA and hence the regulation of transcription

itself. With advent of computers there have been attempts to use modern algorithms like the

support vector machines to predict nucleosome formation potential of the DNA sequences.

Further studies in this area are necessary to arrive at a comprehensive set of rules which will

aid in analysis of the genomic DNA sequence analysis problem, and possibly give an insight

into regulation of transcription.

1.3.3 The Epigenetic Code

Over number of years, it was noted that the functional state of chromatin is heritable. Such

epigenetic information in the form of histone modifications, is characterized by complexity,

diversity and an overall tendency to respond to changes in genomic function rather than

to predict them (111). Epigenetic research is about understanding the heritable regulation

of gene expression that is not directly coded in the genomic DNA (112). We know that

replicating cells are able to maintain their identity from generation to generation. This

essentially requires that the pattern of gene expression that defines a cell type is maintained

identically through the generations. This is referred to as cellular memory (113, 114, 115).
14a step usually means a 10 base-pair periodicity
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When the epigenetic inheritance occurs between generations of cells it is known as mitotic

inheritance. Whereas when the epigenetic inheritance occurs between generations of the

species it is known as meiotic inheritance. Both are seen in the eukaryotic world. Epigenetic

information can sometimes be inherited across multiple generations (116). There are three

biochemical mechanisms that are commonly referred to as epigenetic (112),

• DNA methylation,

• histone modifications, and

• binding of non-histone proteins such as the Polycomb and trithorax group complexes

The question then is, will this information be passed on in form of histone modifications?

This is a crucial question, because if true, then changes to the histones that are induced by

metabolic or environmental influences on the modifying enzymes involved will change not

only the cells initially subjected to these influences but also their progeny (111). Nightingale

et al. (111) have proposed that the terms histone code and epigenetic code be distinguished

as follows viz.,

Histone code To refer to the combinations of modification(s) that are known (at least in

principle) to be involved in ongoing cellular processes

Epigenetic Code To refer to the putative heritable code that might be responsible for the

cellular memory.

One of the first demonstrations of the non-genomic heritability of the state of chromatin

was the position-effect variegation (PEV) as seen in Drosophila melanogaster (106). It has

been shown that the heterochromatin is dynamic in small-time-scales and inaccessible to the

transcription factors (106, 117). Recently it has been shown that the micro-RNAs also effect

epigenetics in mammals, though the mechanism(s) involved are ill understood (118). In this

section we review the literature pertaining to epigenetic code and its basis in the genomic

sequences in a cell.

Histone Modifications The histones of the nucleosome core are subjected to a wide, and

ever increasing variety of post-translational modifications (119). A standard nomenclature

has been suggested to describe these modifications (120). Many histone modifications have
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been documented viz., methylation (121, 122), acetylation (123), phosphorylation (124, 125),

ubiquitination (126), ADP-ribosylation (127), sumoylation (128), deamination, and proline

isomerization (129). Of all the known histone modifying enzymes the kinases and the methyl

transferases are most specific. Histone modifications play a functional role because specific

proteins bind to modified histones, moreover, some modifications are required for binding

of these proteins (130). The resultant effect on the transcription may be a function of the

binding of such factor, or more likely binding of multiprotein-small-RNA complexes to the

modified histone tails. There are known correlations between the covalent modifications and

combinations-of-modifications of the core histones and their functional implications. Di- and

tri- methylation of H3K9, together with de-acetylation of the histones, is hallmark of tran-

scriptionally silenced chromatin (131, 132). Similarly, a combination of hyper-acetylation and

H3K4me3 is a characteristic of transcriptionally active chromatin. Barski et al. studied and

mapped histone methylation patterns in the entire genome using the Solexa-technology (133).

They have used high-throughput methodology and elucidated typical methylation patterns

at various genomic landmarks such as enhancers, promoters, silencers, boundary elements,

and transcribed regions. Similarly it has been shown that hyperacetylation of H3K9, H3K14,

and H4 is positively correlated with H3K4 methylation, and all these changes mark a tran-

scriptionally active state for chromatin (134, 135). Recently Mikkelsen et al. (136) mapped

chromatin states in lineage-committed cells and established a nearly 1:1 correlation between

various histone modifications and transcriptability. Few studies also demonstrate that the

successive modifications of the histones can control the high order chromatin structure and

hence regulation of transcription (137, 138, 139). Further, the effects may vary depending

on whether the modification is in a single nucleosome core or is distributed over neighboring

nucleosome cores. The histone modifications themselves can affect the chromatin in many

ways from transcription activation, gene silencing, DNA repair, and cell-cycle progression

(140). Thus, although the functional effects of the modifications might be identical, the dis-

tribution of the modifications along the tails may vary greatly. In one case the modifications

may be present on a single nucleosome core tail. Whereas in the other, the modifications may

be distributed over a chromatin territory. It is known that the distribution of these histone

modifications across the domain is non-trivial.
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The acetylated isoforms of the histones are seen predominantly in the promoters rather

than the body of the genes. The differentially methylated isoforms of H3K4 differ in their dis-

tribution. H3K4me3 is consistently most enriched at the beginning of the genes, H3K4me2 in

the middle and H3K4me1 at the end (111). H3K36me3, and H3K79me3 are also consistently

enriched across coding regions (111).

The chromatin modifications act either by disrupting contacts of the modified nucleosome

cores with some factors, or by recruitment of some proteins/factors to the nucleosome, and

in effect changing the higher order chromatin structure (119).

With high-throughput methods like the ChIP-on-chip, it is possible to map the histone

modifications on a genome-wide scale. The ChIP-on-chip analyses have shown that the

modification sites are spread across entire genome (141, 142, 143). Moreover, Schübeler et

al. and Bernstein et al. showed a positive correlation between various histone modifications

is conserved across the species (141, 144). However the ChIP-on-chip approach has its own

limitations. It can detect the modification status over a range of nucleosomes or even on

a single nucleosome, but it cannot determine the modification status of different histones

within the same nucleosome. The only way to find this is Mass Spectrography, however,

the requirement of digestion in this technique limits its potential. However, a new ‘top-

down’ approach of first identifying the protein and then digesting it that may allow studying

modifications on intact proteins (145, 119).

Role of Histone Variants The stability of the nucleosome is affected by incorporation

of the histone variants (146). The incorporation of the variant histones marks chromatin

into distinct regions (146). This is exemplified best by difference between the centromeric

and non-centromeric chromatin, which differ only in presence or absence of the histone H3

variant, CenH3. In the non-centromeric regions the H3 variant present universally is H3.3.

It is believed that this counterpart of the CenH3 is a central player in maintaining epigenetic

inheritance (147, 148). It has been shown that deposition of H3.3 occurs primarily in tran-

scriptionally active chromatin and gene regulatory sites (149, 150, 151). Only 4 amino acids

distinguish H3 from H3.3, of these 3 are in the core which prevent H3 from being deposited

during replication (106). These core residues are exposed in the soluble Asf1-H3-H4 escort

complex, which presents H3-H4 and H3.3-H4 to the CAF1 and Hir1 (152), also see page 17.
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There are major differences in the modification patterns of H3 and H3.3. Curiously, removal

of the N-terminal tail of the H3.3 has no effect on its incorporation indicating that the tail

modifications are not important for H3.3 incorporation (153, 149). Active genes are enriched

in both H3.3 and modifications that mark ‘active chromatin such as di- and tri- methylation

of H3K4 (H3K4me2, H3K4me3) etc., and is depleted in markers of inactive chromatin such as

H3K9me2. The silent chromatin is depleted in both (154, 155, 156). In yeast rapid turn over

of the histones was observed in the promoters of actively transcribed genes (157). This rapid

turnover is very high in the promoters and progressively diminishes over the downstream re-

gion of the gene (158, 159, 107). A similar gradient is observed in the occupancy of the H3.3

in Drosophila promoters (149). Even though the yeast lacks H3.3, its H3 is classified as H3.3,

and uses both the CAF1 and Hir1 pathways for nucleosome assembly, implying that the path-

ways of nucleosome assembly that dictate “transcribed” versus “repressed” chromatin states

are conserved (106). Recently Moorman et al. (160) have demonstrated that the “hotspots”

for transcription factor binding sites correspond broadly with H3.3 presence, suggesting that

nucleosome turnover is a general mechanism for the transcriptional machinery to gain access

to the chromosomal targets.

In addition to the histone H3 variants mentioned here other variants are also seen the

eukaryotic world. H2A has known variants namely H2A.Z, MacroH2A, H2A-Bbd and H2A.X

(161). MacroH2A is enriched on the human inactive X chromosome and is enriched specif-

ically in regions that undergo X-inactivation (162). H2A-Bbd is a histone H2A variant

specifically depleted in the inactivated X-chromosome. This phenomenon demonstrates how

the variants of a single histone play role on epigenetic inheritance, where one variant marks

active chromatin and the other inactive chromatin (163). Additionally, the H4 and H1 histone

variants play an important role in tight packaging of the sperm DNA (161).

DNA Modifications In addition to the histones and their variants the DNA itself is

subject to modifications. Especially the CpG islands are known targets of methylation,

and this modification is known to play important role in the regulation of transcription

(164, 165). Further it is known that modified DNA is more susceptible to alterations during

replication (166). In the same line it has been shown that the fidelity of replication of

modified DNA is very low (10−3 mutations per base pair) (166). The mutation rates at
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modified bases are much higher than expected mutation rates of 10−8 per base for unmodified

bases during normal cell division (167). Non-CpG methylation has an established functional

role in plants (168, 169). It has also been observed in mammals in early development,

and embryonic stem cells, but it is significantly decreased in differentiated cells (170). It

has been shown earlier that epigenetic changes in the genome occur during development,

along with changes in the expression patterns of the transcription factors (171, 172, 173).

Further, imprinting, which is a kind of epigenetic inheritance, plays a very important role in

development (174, 175). There are specific disorders known which are linked with disruption

of either maternal or paternal imprinting e.g. Prader-Willi Syndrome, Angelman Syndrome,

and Beckwith-Wiedemann syndrome (176, 177). The abnormality in the epigenetic marks

are now believed to be reason for many human afflictions (178, 179).

There is a close link between DNA CpG methylation and histone modification, with hy-

permethylated regions being rich in histone marks that define a transcriptionally repressed

chromatin (180, 111). Whether the H3K methylation at Lysines other than at position 4

drives DNA methylation or its is the DNA methylation that drives formation of transcrip-

tionally repressed chromatin is not properly understood (111). Moreover, there is evidence

to suggest that this mechanism may vary from system to system. Studies in Arabidopsis

have shown that H3K9 methylation drives DNA methylation (181). However, other stud-

ies have shown that there are indeed loci with intermediate properties of heterochromatin

in which transcription downregulation is inherited in a manner similar to constitutive het-

erochromatin, although the loci are associated with opposing histone marks H3K4me2 and

H3K9me2 (182, 183).

Role of Non-histone Proteins Non-histone proteins also affect chromatin structure. The

polycomb group (PcG) of proteins and the trithorax group15 (trxG) of proteins act as pro-

teins that either bring about the epigenetic modification of the chromatin, or they read

the epigenetic modification of the chromatin and help in effecting the consequences of such

modifications (112). Both the PcG and the trxG act throughout the genome (106).

It has been shown that the PcG actually brings about methylation of DNA by Viré et al.
15These were identified as mutants of the same name in Drosophila melanogaster. Subsequently homologues

were found in higher animals.

24



1.3.3 The Epigenetic Code

(184). The PcG acts though Enhancer-of-zeste subunit of the Polycomb repressive Complex

2 (PRC2), and methylates the histone H3 at lysine 27 (185). This H3K27-methylation keeps

the chromatin in repressed state (186). By default PcG maintains repressive state of chro-

matin. The trxG proteins help reverse this and prevent silencing of the genes during early

development (187). The trxG includes motif-specific DNA binding proteins (e.g., Zeste), nu-

cleosome remodellers (e.g., Bramha and Kismet), H3K4 methyltransferase (e.g., Trithorax),

and a H3K4 demethylase (e.g., Lid) (188, 189). This diversity of the trxG function is also

seen in the vertebrates, and analogous proteins with similar functions have been identified

(190, 191). It is also possible that there are as yet un-discovered trxGs, which are intimately

involved with the epigenetic reading and writing mechanism that maintain active chromatin

(106). It has been shown that the histone H3–H4 chaperone (Asf1) is encoded by suppressor

of PEV and interacts with Brahma in vivo and in vitro (192). Although the PcGs and the

trxGs function in nearly diametrically opposite fashion, they recognize and bind to same sites

called the PREs or PRETREs (Polycomb response element trithorax response element) (106).

The binding of the PcGs or trxGs occurs irrespective of the transcriptional state of the tar-

get homeotic promoter (193). Another protein involved with epigenetic processes is RbAp48

(also known as MSI1), which is a component of various nucleosome-assembly complexes as

well as PRC2, the NURF nucleosome remodeller and other chromatin associated complexes

(194). The exact role is sketchy, however it is speculated that RbAp48 containing complexes

act on partially disassembled nucleosomes during dynamic processes such as replication and

transcription (106).

Heritability of Chromatin State The problem of assigning a heritable role to histone

modification(s) is difficult. For an excellent discussion of mechanisms of epigenetic inheri-

tance read (195). In case of DNA methylation the problem is well understood. Replication of

methylated DNA leads to hemi-methylated sites on daughter DNA which are the preferential

substrate of DNMT1, a DNA methyltransferase, associated with replication machinery (196).

The explanation of the heritable modifications of the histones forming the nucleosome cores

is not that straightforward or well understood (195), especially since the heritable modifica-

tions and the non-heritable modifications co-exist. The techniques such as ChIP-on-chip or

ChIP are gross techniques wherein the average state of the cells is represented. The only way
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around this limitation is to assay levels of histone modifications in a preferably synchronized

culture through mitosis. A study in this direction has been published by Valls et al. (197).

Moreover, it has been pointed out that a specific role for a single modification does not con-

stitute a code (198). This is true because typically the experiment is setup to investigate a

particular modification of histone (111). This also remains to be a limitation of ChIP-on-chip

experiments and their analysis because they focus on ongoing transcription and are not set up

to detect a “heritable” code. The replication of “chromatin” involves DNA synthesis and nu-

cleosome assembly, which occur coordinately in the cell (195). The replication coupled (RC)

nucleosome assembly is the process in which nucleosomes are formed on newly synthesized

daughter strands. Examination of the nucleosome core structure revealed that H3 and H4

tetramer could theoretically be split into H3–H4 dimer (195). In context of the RC chromatin

assembly, it might be possible that the nucleosome disassembles to give two H3–H4 dimers.

Each of this dimer may go to a daughter strand, and form hybrid nucleosomes with new core

histones associated with RC nucleosome assembly (199). Alternatively, nucleosomes may be

divided intact between the two daughter DNA molecules (199, 200). The semiconservative

model is attractive in a sense since it can explain some of the observed phenomena. The

conjecture is that the epigenetic information obtained within each old H3–H4 dimer could

be used as a template to copy information onto the new H3–H4 dimer, thus fully replicating

original nucleosome and also the chromatin status with modification (195).

It has been proposed that the nucleosomes split along H3–H3 dimerization interface during

replication resulting in formation of half nucleosomes, which act as template for the addition

of new half nucleosome (201). Later studies have showed that the (H3–H4)2 tetramers were

inherited intact (202, 163). Furthermore, there is no known mechanism that can replicate

a modification between two half nucleosomes (203). There is some evidence to accept this

semi-conservative replication in a small subset of regulatory sites that transmit epigenetic

memory (204). However, after extensive studies, there is still confusion about whether the

nucleosomes disassemble and are divided (202). This phenomenon is also explained by another

theory which uses the rapid turnover of the nucleosomes at active promoters. It is proposed

that process of histone turnover at regulatory elements perpetuates itself, thus maintaining

chromatin in a constitutively active state (163). Another possibility is described by Henikoff
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(106), which I quote here,

The silent state would be default. CAF1, together with Asf1, would assemble H3 nucleosomes

at replication that are enriched in silent modifications and deficient in active modifications.

Conversely, replication-independent incorporation of H3.3 by other chaperones, such as HirA,

and disassembly by Asf1 would occur at sites of transcriptionally active chromatin and reg-

ulatory elements, process that is set in motion by action of transcription factors. Over the

course of cell cycle, actively modified H3.3 would accumulate at active genes and regulatory

elements, and the random partitioning to daughter chromatids would favor perpetuation of

the active state. Efficient CAF1-dependent assembly behind the replication fork would help to

perpetuate the silent state over broad regions, whereas the local turnover process that results

in histone replacement would cause H3K27 methylation to be lost, thus counteracting silent

chromatin.

It is believed that the rapid turnover of the nucleosomes is carried out by ATP-dependent nu-

cleosome remodellers (205, 150). It is also possible that during remodeling some nucleosomes

are occasionally evicted, transiently exposing DNA and allowing PcGs and/or DNA binding

proteins to find their target sites (106). Then the continued local presence of nucleosome

remodellers would result in another cycle of remodeling, nucleosome depletion and histone

replacement at the said sites. This model has been proposed to explain the short occupancy

times of the transcription factors on the target DNA in vivo (206, 207). This would lead to

reduced nucleosome density and DNAseI hypersensitivity, especially if replacement of nucle-

osomes is a slow process (150). Indeed it has been observed that the PREs are deficient in

nucleosomes as compared to their flanking regions (193, 186). Mito et al. have shown that

this relationship is true for the entire genome (150).

Computational Epigenetics The “Computational” epigenetics comprises of two broad

approaches to study where the computing power is employed viz., i) Data analysis, ii) Pre-

diction.

Data Analysis To understand the computational aspect in the epigenetics studies, it is

essential to familiarize oneself with the techniques used. As mentioned earlier, some of
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the popular approaches for studying epigenetics are ChIP-on-chip, ChIP-seq, and bisulphite

sequencing (112). For a detailed discussion about the factors involved in design and analysis

of ChIP-on-chip experiments, see Buck and Leib (208). In a modified format of ChIP-on-

chip, called the methyl-DNA Immunoprecipitation (MeDIP), the antibodies are used against

an epigenetic modification of the DNA (209). The ChIP-seq is a variant of ChIP-on-chip.

It uses high-throughput DNA sequencing rather than tiling arrays for detecting differences

between sample and control DNA (136, 133). The ChIP-seq has advantages over ChIP-on-

chip, i) Data normalization is not an issue because the results obtained are absolute read

counts. ii) With advances in sequencing technology, the experiments are very cost effective.

The frequently used bisulphite sequencing method exploits the ability of bisulphite to convert

DNA methylation state of cytosines into a methylation-dependent SNP (210, 211).

All the techniques used to study epigenome data generate vast amount of data which

require efficient ways of data processing and quality control. In analysis of a ChIP-on-chip

data the challenge is to derive a ranked list of over-represented genomic regions from raw

intensities (212, for detailed discussion see). Usually a three step process is used as follows

(213),

1. microarrays are quantile-normalized and standardized to a common median intensity,

2. a Wilcoxon rank sum test is applied locally on a sliding window to test for differential

hybridization and to derive a Z-score for each probe.

3. significant probes are merged into regions of overrepresentation if sufficiently close to

each other, and these regions are ranked by their combined Z-score.

Various approaches from Hidden Markov Models, linear models, probabilistic models were

developed to improve the spatial resolution of the peaks (214, 215, 216). Several toolkits are

now available in the public domain (not necessarily open sourced) to deal with ChIP-chip

datasets, we list a few here for posterity e.g. TileMap, ChIPOTle, Ringo16 (217, 218, 219).

This problem of peak-detection is still unsolved. A framework has been proposed by Du et

al. (220) to identify most informative regions.

The problems of analysis with ChIP-seq are slightly better understood than those of ChIP-

on-chip. The key step in this analysis is fast and accurate mapping of the short sequence to the
16a BioConductor package
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reference genome. This is usually done using blastn17 (1), or BLAT (221). Unlike the probe

intensities in the ChIP-on-chip, the ChIP-seq corresponds to a genomic fragment bound to

the target. So normalization is virtually not required. However, analysis of this type of data

comes with its own set of pitfalls. The process of mapping tags to the reference genome can

bias the analysis toward genomic regions with unique and complex sequence patterns. This

is because short sequencing reads that may partially overlap with low-complexity regions or

with other interspersed repeats stand a higher chance of being discarded for lack of unique

genomic alignment (112).

We discuss the Data analysis part only briefly because it is beyond the scope of this thesis.

Prediction In addition to the analysis of the ChIP-on-chip and the ChIP-seq data, some

basic sequence analysis at the genomic sequence level is also part of the analysis of the

epigenetics/epigenome. Furthermore, it is always useful to build statistical model(s) of the

epigenetic information available, and improve these models as more and more information

is available (112). The work in this direction was started by predicting promoters (222).

Moreover, for a detailed discussion on prediction of cis-regulatory modules/motifs please see

section 1.3.1, on page 7. Though the efforts in promoter prediction in highly annotated

genomes e.g. Human genome have slowed down, meta-analysis of known promoters is now on

the rise. Smith et al. (223) have looked at presence of the tissue-specific regulatory elements

in the promoters. Similarly, Bulcke et al. and others have looked into re-constructing the

TRNs by mining multiple genomic information resources (224).

Another area of interest specifically related to epigenetics/computational epigenetics is

prediction of the CpG islands. Many CpGs actually overlap with promoter regions (225).

CpGs play a general role as regulator of chromatin remodeling. It is also known that the CpGs

are most common targets for methylation. Therefore prediction and identification of bona-fide

CpG islands is important. The criteria currently used for such assessment were proposed by

Bock et al. (226). The prediction of methylation (regions where CpG methylation is highly

probable) is conceptually easier because the methylation patterns are largely independent

of tissue as compared to other epigenetic marks (112). It has been observed by several

workers that DNA methylation prediction for sequences derived from different tissues such
17Available at http://www.ncbi.nlm.nih.gov/BLAST
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as lymphocytes (227), and brain (228) have comparable results. Furthermore, the sequences

that are predicted to be CpG islands are also predominantly the targets for DNMT1 (229,

230, 112).

In addition to the use of computers and machine learning techniques to predict and/or

estimate CpGs and their methylation, attempts have also been made at predicting post-

translational modifications of the histones computationally. Li et al. have demonstrated a

software tool that successfully predicts the histone acetylation sites18 (231).

The nucleosome positioning and its prediction is yet another area related to the prediction

of the epigenome from the primary sequence. For a discussion on the topic of nucleosome po-

sitioning see section 1.3.2. By virtue of the definition of epigenetics (see page 19), it eminent

that nucleosome positioning would pay in important role in regulation of transcription. Anal-

ysis of the primary sequences to predict nucleosome positioning and effects of the sequences

on DNA and histone modifications is gradually gaining importance.

Summary In summary, epigenetics is important for understanding variety of biological

phenomena. Both histone modifications and DNA modifications are intimately linked and

affect each other (232). With new and high-throughput techniques such as the ChIP-on-

chip, ChIP-seq, etc. arises immediate need for development of analytical, mathematical, and

statistical tools to deal with this burgeoning data. Furthermore, with availability of highly

annotated genomes, the task will be to put all the information together in a context to

arrive at proper inference from such experiments. All single experiments in case of epigenetic

analysis are important because each experiment contributes towards the overall knowledge.

The problems in epigenetics are being understood only now, and with availability of more

data the picture will hopefully become clear. It is quite apparent from the literature that the

primary genomic sequences play a role in modulating and controlling the epigenetics of the

genome. Though it is not very clear if the effects of the sequences are direct (sequence-specific)

or indirect (more related with charge distributions being detected and recognized rather than

the sequence itself). The precise role of the primary genomic sequences in directing epigenetic

modifications is poorly understood and needs to be investigated further.
18available at http://bioinformatics.lcd-ustc.org/pail/
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1.4 Closing Remarks

In the past few pages we have discussed various aspects of the genome that need to be studied

to understand regulation of transcription (see pages 11 and 19). The genomic sequences play

a very important role in regulation of all nuclear processes and “molecular biology” of the

nucleus. For a long time, the role of the genomic sequences per se was not well understood.

However, with advances in technology and availability of sequences for many genomes, our

understanding of the crucial role of the sequences is improving. Previously, regions of ge-

nomic DNA which could not be assigned a canonical function were usually classified as “junk”

DNA. Our understanding today tells us that there is probably no “junk” DNA in the genome.

The genome actually functions as a multi-hierarchical dynamic nucleoprotein-complex called

‘chromatin’. Chromatin includes genomic DNA and histones as major components in addition

to non-histone DNA binding proteins and chromatin remodeling complexes. The hierarchi-

cal packaging of chromatin poses an interesting question regarding the features/information

in the primary genomic sequence that act as a driving force for the compact assembly of

chromatin. In this thesis, I have attempted to search for motifs in DNA that play important

role(s) in selected biological processes that affect chromatin remodeling and hence regulation

of gene expression. The thesis will also discuss some important considerations that should

ideally be taken into account when designing and performing bioinformatics analysis of ge-

nomic DNA sequences. The probable role of the DNA sequences to direct tissue-specific

expression of genes is also explored with few approaches that hold promise.
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Chapter 2

Specific Motif Context in HIV
integration target sequences

2.1 Introduction

In 2002, Schroeder et al. demonstrated conclusively for the first time that HIV integration is

a non-random event (1). Multiple early reports had indicated that HIV integration is indeed

non-random, however, none of them provided compelling evidence with adequate controls

and more importantly, using data from integrations spanning the entire genome. To discuss

the genesis of project, we will first discuss this particular article. Another important study

comparing the integration sites of various retro-viruses by Mitchell et al. will be also discussed

(2). Previous studies had demonstrated an overlap between the target sites selected by the

retrotransposons in yeast and the retroviruses in higher animals suggesting similarities in

their targeting mechanisms (3). The study of retroviral integration sites is thus important

not only to understand the biology of retroviruses, but also to understand the contribution

of host factors and in turn, for designing better strategies for gene therapy.

2.2 Patho-physiology of HIV infection

The Human Immuno Deficiency Virus is a RNA1 virus. It belongs to the superfamily of

Retrotranscribing viruses, family Retroviridae (RNA as genomic material which is reverse

transcribed into DNA), sub-family Orthoretrovirinae, clade Lentivirus, and specifically the

primate lentivirus group. Most of these viruses have fastidious requirement of specific host/
1Possesses strands of sense RNA as genetic material
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2.2. PATHO-PHYSIOLOGY OF HIV INFECTION

Figure 2.1: Schematic representation of HIV lifecycle: A schematic cartoon of HIV
lifecycle (adapted from (4)).

cell-type. Many host and virus proteins play role in this species restriction (5). This virus is

the primary causative agent of the acquired immuno deficiency syndrome (AIDS). The HIV

in particular attacks the CD4+ve cells and destroys the ability of the affected individual to

mount a immune response (6).

Following fusion of the virus with the host cell, the genetic material of the virus is released

in the cytoplasm and undergoes reverse transcription into DNA and is simultaneously used

as mRNA to produce virus specific proteins necessary for completion of its lifecycle (7). One

of the virus specific proteins produced is the enzyme reverse transcriptase which is necessary

to catalyze this conversion of viral RNA into cDNA. Specific viral proteins and host proteins

associate with the viral cDNA forming the pre-integration complex (PIC) (8). The PIC

migrates to the nucleus and brings about integration of the viral cDNA with the host genome

(9). Such an ‘integrated’ cDNA may persist in the host for number of years asymptomatically.
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2.3. BRIEF HISTORY OF HIV INFECTION

Activation of the host cells results in the transcription of viral DNA into messenger RNA

(mRNA), which is then translated into viral proteins (10). The exact mechanisms of the

conversion of latent virus to cytolytic phase are not clear (11, see for a review). The new

viral RNA forms the genetic material for the next generation of viruses. The viral RNA and

viral proteins assemble at the cell membrane and mature into a new virion. Amongst the

viral proteins the HIV protease is required to process other HIV proteins into their functional

forms. Following assembly at the cell surface, the virus buds from the cell and is released to

infect another cell. Unless the HIV life-cycle is interrupted by treatment with anti-retroviral

agents, the virus infection spreads throughout the body and results in the destruction of the

body’s immune system, which leads to the AIDS.

2.3 Brief history of HIV infection

Beginning of an end HIV begins its infection of a susceptible host cell by binding to the

CD4 receptor on the host cell. Recently it has been discovered that CD4+ cells are susceptible

to recurrent infection by HIV (6). CD4 is present on the surface of many lymphocytes, which

are a critical part of the bodys immune system. Recent evidence indicates that a co-receptor

is needed for HIV to enter the cell (12).

Fusion Fusion of the virus particle with the host cell is the first step in HIV infection.

As mentioned earlier CD4+ is the major receptor for the HIV. However, many cell surface

proteins also act as receptors for various infective viruses. In an excellent review by Bour et

al. an exhaustive list of cellular receptors of the retroviruses is provided (7). Some viruses,

e.g. ASLV-A, MuLV-E, BLV, etc. use proteins on the host cell surface, that normally function

in the cell as amino-acid transporters. The gp120 is a protein encoded by the virus and is

part of its capsid. This protein acts as the primary viral partner in the starting of the fusion

reaction. Fusion is thus a very important step in the virus lifecycle.

Role of the cell cycle Cell cycle effects on the virus lifecycle are virus specific. Gam-

maretroviruses2 require mitosis for pro-viral integration whereas lentiviruses are able to repli-
2The genome is dimeric; not segmented and consists of a single molecule of linear, positive-sense, single-

stranded RNA.
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2.4. WHAT IS KNOWN ABOUT HIV INTEGRATION TARGET SITE SELECTION?

cate in post-mitotic non-dividing cells (13). Resting cells such as näıve resting T lymphocytes

from peripheral blood cannot be productively infected by retroviruses, including lentiviruses,

but the molecular basis of this restriction remains poorly understood (5). Initial studies in

retroviral infections had found that the synthesis of virus specific RNA was independent of

the cell cycle (14). It has been shown that there is efficient accumulation of nuclear forms of

Avian Sarcoma Virus DNA in γ-irradiation arrested cells (15). Katz et al. have showed that

the cell cycle plays an important role in the ability of the HIV virus to infect the cell (13).

Majority of cells of an animal host are not progressing rapidly through the cell cycle, and such

a cellular environment appears to be suboptimal for replication of all retroviruses. Moreover,

it has also been demonstrated that HIV-1 integrates into the genomes of in vitro inoculated

resting CD4+ T cells that have not received activating stimuli and have not entered cell cycle

stage G(1b) (16). More recently it has been shown that the early stages of the HIV life cycle

are inefficient in post-stimulated CD4+ cells and that efficient replication cannot be induced

by subsequent activation (17).

Role of the host proteins The integration of the HIV pre-integration complex (PIC) is a

very complex process. Many cellular and virus encoded proteins play important role in this

process. It has been known that HMG-I(Y) is part of the pre-integration complex (18). Most

notably the SWI-SNF complex (19), and the LEDGF/p75 (20) are also part of this complex.

HIV as a retrovirus is a very sophisticated and efficient instrument of payload delivery. But it

does not have all the required machinery for the sustenance and reproduction and therefore

depends on many host proteins for the same. Apart from the proteins mentioned above,

many other cellular proteins play a role in infectivity and pathogenicity of the HIV in the

host cell. Some other well documented proteins are barrier-to-autointegration factor (BAF),

Ku, lamina-associated polypeptide 2a (LAP2a), (21, and references therein).

2.4 What is known about HIV integration target site selec-

tion?

Integration of retroviral cDNA into the host cell chromosome is an essential obligatory step

in its replication virus lifecycle (22). Integration of the virus or its PIC on naked DNA
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is considered non-specific (1). However, inside a cell, the PIC is presented with chromatin

and not the naked DNA. Specific sequences in the viral genome that are necessary for the

integration into the host genome have been characterized (23). This process is catalyzed by

the retroviral integrase protein, which is conserved among retroviruses and retrotransposons

(24, 4). Integrase is important part of the functional PIC (24). While the PIC is capable of

directing integration of the viral cDNA at any chromosomal location, different retroviruses

have clear preferences for integration in or near particular chromosomal features (25, 26, 27,

28). Lewinski et al. performed a comparative study in this regard and demonstrated that the

HIV Gag plays an important role in targeting of the pro-virus to the genomic DNA (29). HIV

has been shown to preferentially integrate in the vicinity of the transcription start sequences

(2, 30). There is also evidence to show that in untreated HIV infected patients, the HIV

integration occurs preferentially within genes (31). Similarly, there are specific regions of the

genome which are avoided by the virus for integration, e.g. the centromeric alphoid repeats

(32). In vitro studies have shown that HIV integration targets DNA with protein induced

bending, suggesting that the site selection requires more information than the sequence itself

(33). The mechanism of such a specific site selection has been an enigma. Only recently

some observations have made better understanding of this aspect of HIV integration possible

(34, 35). Holman & Coffin, have demonstrated that there is a symmetrical base preference

around the provirus integration site (34). Jhonson & Levy have shown that matrix attachment

regions (MARs) influence the target site selection by the HIV PIC (35). The primary DNA

sequence features have been implicated in the target site selection by the HIV-PIC in vivo(36).

The observations of Leclercq et al. and Jhonson & Levy are significant for further discussion

(Section 2.5, on page 53), they say that if most or all the regions of the genome appear to be

accessible to HTLV-1 integration, local DNA curvature seems to confer a kinetic advantage

for both in vitro and in vivo HTLV-1 integration (35, 36).
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2.5 HIV integration hotspots are also rich in SATB1 binding

sequences

In the year 2002 Schröder et al. published an article that showed that HIV integration

is not random but occurs at specific spots in the genome (1). At the same time in our lab

attempts were on to find genome-wide targets for the chromatin modulator SATB1. To locate

the gnomic locations where SATB1 binding sequences are present, a well known technique

of Chromatin Immuno-precipitation (ChIP) was used (37). Briefly, the chromatin in the

cell (monolayer or suspension culture) was crosslinked using formaldehyde. The crosslinked

chromatin was extracted, and immunoprecipitated using α-SATB1 antibody. The cross links

were reversed and the genomic DNA was extracted from the immunoprecipitated chromatin.

To monitor presence of the genomic region of interest PCR is then carried out using specific

primers. Alternatively, for identification of novel sites DNA from the immunoprecipitated

chromatin is purified, cloned and sequenced. Most astonishingly, the sequences thus obtained

were from a reported HIV integration hot spot on chromosome 11 as reported by Schröder et

al. (1). SATB1 is global chromatin organizer and transcription factor. One of its functions

is to anchor the genomic DNA to the nuclear matrix, by binding to the MARs (38). When

seen in context of Section 2.4, we hypothesized presence of a link between the genomic

DNA sequence and the target site selection by the HIV-PIC. As a T-lineage-enriched global

chromatin organizer, we proposed that SATB1 could be the host factor that is targeted by

the PIC and therefore could dictate the integration site choice.

2.6 HIV integration occurs at specific location in the genome

HIV prefers certain regions in the chromosomes for its integration over others. To unequiv-

ocally establish this, Schroeder et al. used a very elegant procedure to demonstrate the

non-randomness of HIV integration (1). Briefly, SupT1 cells were infected with HIV in vitro.

Genomic DNA was obtained from these infected cells. This genomic DNA was subjected

restriction digestion. These digested fragments were used as template for PCR. One of the

primers’ corresponded to the LTR of the integrated virus, and the other primer was directed

at the restriction enzyme site used to digest the genomic DNA. Thus, they amplified selec-
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SEQUENCES.

tively only those regions of the genome that had the virus integrated. A similar exercise was

carried out by exposing the purified (naked) genomic DNA to the PIC in vitro. Both the sets

of sequences were submitted to NCBI and were available in the public domain for download.

This dataset provided the starting point for our analysis.

2.7 Alu-like motifs are enriched in sequences flanking the re-

ported HIV-1 integration sequences.

2.7.1 Preliminary Sequence Analysis

We initially performed a gapped alignment of sets of cloned integration sequences deposited

in NCBI using ClustalX (39). Multiple sequence alignments of in vivo integration sequences

revealed a pattern. We found that these sequences share extended homologous regions which

were spread across the lengths of the sequences. The sequence similarity appeared to be

present in ‘chunks of similar sequences in nearly all the sequences taken for alignment.

Initially, the HIV-1 integration sites were retrieved through the in vivo experiments re-

ferred in Section 2.4, however, it resulted a sequence set of varying length. The length of

the reported sequences flanking integration sites sequences in the GenBank varies from 26

base pairs to over 1700 base pairs. More importantly, the manner in which the integration

sequences were cloned represented only the 3′ half of the integration site (1). We therefore

BLASTed (40) each of the reported integration sites onto the reference sequence of the human

genome, and acquired the 5′ and 3′ flanking regions such that for each integration site a length

of 2 kb sequence was obtained, for maintaining uniformity in analysis. A set of 429 sequences

each with size 2 kb were used for further analysis. Multiple sequence alignments (MSA) were

performed for such a data set which revealed regions of homologies among multiple sequences

as in case of the original in vivo experiments as seen in Figure 2.3. The scheme describing

the preparation of the data is depicted in Figure 2.2.

A single unrooted phylogenetic tree was plotted for these sequences (genomic sequences

flanking the mapped HIV integration sites) as shown in Figure 2.4. The phylogenetic tree

showed one major branch of related sequences, which comprised of more than 60% of the

sequences (Figure 2.4). As a control data set, 450 sequences were simulated using the first-
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Figure 2.2: Scheme for Data Preparation.

Figure 2.3: Regions flanking the integration sequences show specific conserved
regions: MSA of the flanking regions of the integration sites was visualized as sequences.
The neat ‘chunks’ of similarity can be clearly seen, showing that there are regions around the
integration sequences that are nearly identical at all the integration sites.
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order Markov chain simulator considering the random transition of bases amongst themselves.

We also used fifth order Markov chain simulator to generate a set of randomly picked up

sequences from the human genome. We refer to the former control sequence data set as

simulated random and the latter as random. The unrooted phylogenetic trees for both these

random sequence data sets displayed virtually no relatedness amongst individual sequences

(Figures 2.5 and 2.6). Each of the Figures 2.5 and 2.6, actually shows unrooted tree of 450

sequences, such that each individual line, denotes a sequence. Figure 2.4 prompted us to look

for presence of motifs if any in the given set of sequences (See Section 2.4).

Furthermore, the sequences were compared against the Reference Human Genome (Build

35 version 3) database. The distribution of the integration sites in the genome (only the real

invivo sequences as mentioned by Schröeder et al. (1) were taken for this analysis) is shown in

the Figures 2.7 and 2.8. It can be clearly seen from Figure 2.7 that the number of integration

sites per chromosome corresponds to the Gene Density (number of genes per mega base pair

of genomic DNA) of the chromosome. In Figure 2.7 the red impluses denote the number of

integration sites in each chromosome (the abscissa). The black line denotes the Gene Density

of each chromosome (plotted on the second y axis). Also, it is clearly seen there that the

maximum number of integration events occur in chromosome number 19, which is the most

gene-rich chromosome in the human genome.

The same relation also exists with respect to absolute number of genes per chromosome

(Figure 2.9). Further there is no direct relation ship between the length of the chromosome

and number integration events scored per chromosome. No integration events were seen in

the Y chromosome. This correlation is further illustrated in Figure 2.10. It can be seen that

there is a clear positive correlation between the Gene Density and the retroviral integration

events. The correlation co-efficient R-squared is 0.79 (p-value � 0.001).

Although there is a positive correlation between the length of a chromosome and number

of integration events, it is a weak correlation (R-squared = 0.43, and p-value = 0.03), as

can be seen in Figure 2.11 and Figure 2.12. In Figure 2.12, the red bars denote length of

chromosomes and are plotted on the Y-axis to the left, the black line represents number of

integration events on the respective chromosomes, and is plotted on a different scale (in the

Y-axis to the right) to the right.
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2.7.2 Motif Detection

Increasing number of motif detection programs and algorithms have been designed and are

available in the public domain. One of the most well known motif finding program is the MEME

(Multiple Expectation-maximization for Motif Elicitation) (41). The 2kb length sequences

obtained (described earlier on page 54), were subjected to the MEME, and following constraints

were set viz.,

• Number of motifs to be found - 10

• Length of motifs to be found - minimum 5 to maximum 50

• Number of times a consensus sequence is expected to be in the dataset - total number

of input sequences

• A consensus motif may be present zero or one or more than once per sequence

• Both the strands of the DNA sequence to be searched

All the parameters were decided by trial and error. The program per se is highly compu-

tation intensive, and it generates a Regular Expression for the motif from the input sequences.

From the BH-series sequences (1) we obtained a set of ten motifs, the motifs and their se-

quences are shown in table 2.1.

Motif Motif Sequence (5′ – 3′)
1. GGCGCGCGCCTGTAATCCCAGCACCTGCGGAGGCGCGAGGCGGGGGGGGATCA
2. CCCCGGGTGGCGGGGATTGCAGGGATCTGCGATCACGCCAAGC
3. CCAGCCTGGGCAACAACAGAGTGAGACCCCGTCT
4. AGACGGGGTTTCACCATGTTGGCCAGGCTGG
5. AAAAAAAAAAAAAAAATTAGCCGGGCCGTGGT
6. CCCGGGCTCAAGTGATCCTCCCGCCTCAGCC
7. CAGGCGTGAGCCACCACGCCCGGCTAATTTT
8. CACGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGGATCGCTTG
9. TTTTTTTTTTTTTTTTTTTTTTGAGACGGAGTCTGCTCTGTC

10. AGGTCAGGAGTTCGAG

Table 2.1: Motifs obtained after processing the sequences through MEME: The 2 kb
flanking regions obtained (as described in the text) were used in the MEME to obtained motifs.
Most of the default settings for the program were preserved. Ten most significant motifs were
obtained under the default background model of the algorithm.
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Figure 2.4: Unrooted Tree obtained by Multiple Alignment of the Integration
Sequences: As described in the text 2000 bp flanking the invivo integration sites were
downloaded and subjected to MSA using the clustal algorithm.
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Figure 2.5: Unrooted Tree obtained by Multiple Alignment random simulated
sequences with human bias: Briefly, 5th order Markov Model obtained a human contig
was used as described at the RSAT. 450 sequences each of length 2000 bp were generated and
were used in a MSA exercise. The obtained distance matrix is visualized here as a unrooted
tree.
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rand 224 random

rand 388 random

rand 48 random

rand 222 random

rand 333 random

rand 396 random

rand 85 random

rand 89 random

rand 92 random

rand 136 random

rand 90 random

rand 408 random

rand 139 random

rand 233 random

rand 109 random

rand 149 random

rand 315 random

rand 422 random

rand 40 random

rand 108 random

rand 255 random

rand 406 random

rand 68 random

rand 427 random

rand 60 random

rand 361 random

rand 326 random

rand 392 random

rand 49 random

rand 370 random

rand 96 random

rand 394 random

rand 62 random

rand 401 random

rand 372 random

rand 433 random

rand 114 random

rand 205 random

rand 277 random

rand 282 random

rand 386 random

rand 13 random

rand 445 random

rand 121 random

rand 346 random

rand 17 random

rand 281 random

rand 167 random

rand 298 random

rand 70 random

rand 347 random

rand 78 random

rand 132 random

rand 187 random

rand 438 random

rand 234 random

rand 424 random

rand 117 random

rand 449 random

rand 260 random

rand 353 random

rand 22 random

rand 177 random

rand 155 random

rand 198 random

rand 218 random

rand 79 random

rand 350 random

rand 156 random

rand 310 random

rand 231 random

rand 283 random

rand 308 random

rand 3 random

rand 374 random

rand 43 random

rand 299 random

rand 144 random

rand 253 random

rand 356 random

rand 342 random

rand 429 random

rand 175 random

rand 235 random

rand 292 random

rand 247 random

rand 259 random

rand 223 random

rand 329 random

rand 304 random

rand 400 random

rand 7 random

rand 312 random

rand 359 random

rand 27 random

rand 317 random

rand 31 random

rand 131 random

rand 37 random

rand 91 random

rand 19 random

rand 240 random

rand 150 random

rand 25 random

rand 126 random

rand 10 random

rand 437 random

rand 316 random

rand 82 random

rand 208 random

rand 47 random

rand 225 random

rand 351 random

rand 387 random

rand 229 random

rand 354 random

rand 287 random

rand 421 random

rand 50 random

rand 407 random

rand 95 random

rand 448 random

rand 325 random

rand 432 random

rand 335 random

rand 98 random

rand 362 random

rand 143 random

rand 318 random

rand 32 random

rand 327 random

rand 339 random

rand 154 random

rand 446 random

rand 338 random

rand 434 random

rand 34 random

rand 274 random

rand 293 random

rand 402 random

rand 166 random

rand 311 random

rand 172 random

rand 418 random

rand 29 random

rand 105 random

rand 56 random

rand 443 random

rand 81 random

rand 279 random

rand 195 random

rand 44 random

rand 390 random

rand 53 random

rand 410 random

rand 246 random

rand 367 random

rand 33 random

rand 67 random

rand 87 random

rand 101 random

rand 125 random

rand 130 random

rand 128 random

rand 288 random

rand 72 random

rand 137 random

rand 358 random

rand 415 random

rand 76 random

rand 217 random

rand 106 random

rand 393 random

rand 230 random

rand 376 random

rand 165 random

rand 379 random

rand 381 random

rand 239 random

rand 378 random

rand 2 random

rand 200 random

rand 284 random

rand 191 random

rand 431 random

rand 65 random

rand 185 random

rand 23 random

rand 436 random

rand 203 random

rand 261 random

rand 303 random

rand 178 random

rand 428 random

rand 275 random

rand 123 random

rand 202 random

rand 264 random

rand 373 random

rand 301 random

rand 15 random

rand 59 random

rand 83 random

rand 265 random

rand 28 random

rand 61 random

rand 323 random

rand 419 random

rand 120 random

rand 399 random

rand 382 random

rand 403 random

rand 147 random

rand 344 random

rand 39 random

rand 430 random

rand 84 random

rand 180 random

rand 88 random

rand 414 random

rand 174 random

rand 215 random

rand 4 random

rand 213 random

rand 291 random

rand 220 random

rand 257 random

rand 280 random

rand 116 random

rand 276 random

rand 164 random

rand 206 random

rand 24 random

rand 69 random

rand 41 random

rand 138 random

rand 93 random

rand 322 random

rand 417 random

rand 441 random

rand 8 random

rand 389 random

rand 171 random

rand 337 random

rand 122 random

rand 404 random

rand 86 random

rand 111 random

rand 51 random

rand 216 random

rand 360 random

rand 80 random

rand 345 random

rand 341 random

rand 395 random

rand 46 random

rand 127 random

rand 309 random

rand 375 random

rand 153 random

rand 384 random

rand 328 random

rand 330 random

rand 9 random

rand 199 random

rand 258 random

rand 270 random

rand 188 random

rand 214 random

rand 228 random

rand 357 random

rand 302 random

rand 26 random

rand 416 random

rand 30 random

rand 163 random

rand 140 random

rand 321 random

rand 170 random

rand 425 random

rand 115 random

rand 271 random

rand 158 random

rand 352 random

rand 176 random

rand 241 random

rand 168 random

rand 273 random

rand 237 random

rand 286 random

rand 196 random

rand 251 random

rand 11 random

rand 238 random

rand 94 random

rand 269 random

rand 110 random

rand 189 random

rand 141 random

rand 169 random

rand 20 random

rand 124 random

rand 103 random

rand 295 random

rand 146 random

rand 405 random

rand 201 random

rand 391 random

rand 58 random

rand 145 random

rand 100 random

rand 102 random

rand 263 random

rand 186 random

rand 420 random

rand 16 random

rand 54 random

rand 254 random

rand 366 random

rand 210 random

rand 398 random

rand 371 random

rand 440 random

rand 21 random

rand 142 random

rand 36 random

rand 159 random

rand 232 random

rand 278 random

rand 364 random

rand 55 random

rand 297 random

rand 57 random

rand 413 random

rand 64 random

rand 161 random

rand 107 random

rand 314 random

rand 52 random

rand 305 random

rand 219 random

rand 385 random

rand 151 random

rand 383 random

rand 250 random

rand 266 random

rand 332 random

rand 66 random

rand 236 random

rand 252 random

rand 334 random

rand 192 random

rand 194 random

rand 73 random

rand 207 random

rand 409 random

rand 134 random

rand 365 random

rand 411 random

rand 226 random

rand 227 random

rand 248 random

rand 349 random

Figure 2.6: Unrooted Tree obtained by Multiple alignment of random sequences
of equal length: Briefly, 450 sequences each of length 2000 bp were generated assuming
equal probabilities for all the nucleotides. This figure shows a unrooted tree obtained after
MSA of such sequences.
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2.7.2 Motif Detection

Figure 2.7: Integrations sites and gene density are positively correlated: In the
Figure, the ‘red’ spikes denote the number of integration sites in a chromosome (the abscissa),
plotted on the Y-axis on the left handside. The ‘black’ line denotes the gene density/Mb on
each chromosome plotted on the Y-axis on the right handside for the same abscissa as before.
It can be seen that the Gene density and number of integration sites are positively correlated.
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2.7.2 Motif Detection

Figure 2.8: Correlation between Gene density and integration sites: In this figure
the number of integration sites are plotted against the gene density. The line shows the linear
positive correlation between the number integration sites and gene density.
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2.7.2 Motif Detection

Figure 2.9: Number of integration sites on a chromosome are directly proportional
to number of genes:The abscissa is the chromosome. The red impulses denote the fraction
of integration sites present on each chromosome (plotted on Y-axis on the left hand side).
The fraction is basically ratio of number of integration sites mapped to a chromosome to the
total number of mapped integration sites. The black line (plotted on the Y-axis on the right
hand side) shows number of genes present on each chromosome.
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2.7.2 Motif Detection

Figure 2.10: Number of integration sites and number of genes are very highly
positively correlated: In this figure the number of genes is plotted on the abscissa and the
fraction of integration sites associated with these number of genes a plotted on the ordinate.
The positive correlation can be seen between the number genes and the integration sites.
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2.7.2 Motif Detection

Figure 2.11: Number of integration sites on a chromosome and its length are
weakly correlated: The red impulses denote the length of the chromosome and the black
line denotes the number of integration sites present on the chromosome.
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2.7.2 Motif Detection

Figure 2.12: Chromosome length and integration sites (correlation): The number of
integration sites and length of chromosome are weakly positively correlated. In this figure
the length of the chromosomes is plotted on the abscissa and the number of integration
sites associated with these lengths of chromosmes are plotted on the ordinate. The positive
correlation can be seen between the length of the chromosomes and the integration sites.
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Motif No. Motif Width No. of Sites Cumulative E-value Average Occurrence
1 50 500 6.3× 10−5907 1.17
2 43 500 6.7× 10−3529 1.17
3 31 461 1.6× 10−3413 1.07
4 31 329 4.1× 10−2511 0.77
5 31 491 3.5× 10−1608 1.4
6 31 285 1.1× 10−1539 0.66
7 31 286 7.4× 10−1491 0.67
8 50 175 5.5× 10−2015 0.41
9 43 168 8.5× 10−1516 0.39

10 16 273 3.0× 10−709 0.64

Table 2.2: Statistics for the Motifs found in the BH series sequences.
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Motif No. Motif Width No. of Sites Cumulative E-value Average Occurrence
1. 12 8 6.3e+009 0.02
2. 15 11 1.4e+010 0.02
3. 12 14 1.6e+010 0.03
4. 15 2 3.1e+010 0.004
5. 15 2 3.1e+010 0.004
6. 15 8 4.8e+009 0.02
7. 12 8 3.3e+010 0.02
8. 12 2 3.9e+010 0.02
9. 12 2 4.0e+010 0.004

10. 12 2 4.0e+010 0.004

Table 2.3: Statistics for the motifs detected in the control sequences.
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2.8. ALU REPEATS AND RETROVIRAL INTEGRATION

It can be seen from Table 2.23, that there are 10 motifs, that show a very low E-value.

E-value denotes probability that a given result is false positive, e.g. 6.3 × 10−5907, means

there is a probability of getting one false positive if 105907 random sequences are analyzed.

The sequences of these motifs were highly similar to the Alu repeats (See Section 2.8). When

these sequences were passed through the RepeatMasker (42, and references therein). It was

seen that many Alu repeats and other simple repeats were masked, after processing through

the program. However, the motifs were still seen in the ‘masked’ sequences when used with

the MAST (41).

As a control data set, use also used randomly generated/simulated sequences, which were

human biased. These sequences were of identical length as that of the test sequences (obtained

from (1)). The MEME (41) was used on these control sequences with same parameters that

generated Table 2.2. The results obtained are summarized in Table 2.3. It can be seen when

comparing the column ‘Cumulative E-value’ (for description see page 2.7.2) for Tables 2.2

and 2.3, that the E-value for the motifs detected in the control sequences is very high. In

fact, it should be noted that the powers are all positive which means for each true positive

detected there will be 10n false positive results, where n is the E-value. Thus we can safely

say that the motifs detected are of not statistically significant. Also the motifs are not seen

in many sequences. Thus it can be said that the retroviral integration sites contain specific

motifs, which are not seen in random sequences. Furthermore, it can be seen that irrespective

of the sequence of the motif, occurrence in random sequences is rare. Whereas, in the invivo

sequences the motifs are not only present as significant sequences, but they are also present

in large more number of sequences.

2.8 Alu-like motifs are enriched in sequences flanking the re-

ported HIV-1 integration sequences

As seen from the motif detection exercise, it is clear that the motifs detected are part of Alu

repeats. We evaluated the role of the repetitive DNA in the selection of the integration site

by the retroviral PIC. We used the sequences available in the public domain and reported
3The average occurrence denotes total number of occurrences of a given motif divided by total number of

sequences taken for analysis
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2.8. ALU REPEATS AND RETROVIRAL INTEGRATION

Sr. No. Repeat Category Number

1. Present in BH series only 159
2. Present in the ASLV integra-

tion sites only
29

3. Present only in the PBMCs 10
4. Present in BH series and the

ASLV integration sequences
51

5. Present in BH series and
PBMCs

32

6. Present in ASLV and PBMCs 4
7. Common repeats present in all

the data set
54

Total 339

Table 2.4: Number of repeats present in different data sets and their combinations.

earlier by Schröder et al. and Mitchell et al. (1, 2). The data sets used and the preliminary

statistics generated is given in Table 2.5.

These sequences were passed through the CENSOR program (43). The output of the pro-

gram is in three parts, it returns list of repetitive elements present in each sequence and

the position(s) in the sequence where the repetitive element is present. It can be seen from

Table 2.4, the fraction of number of sequences containing repeat sequences is similar across

the data sets. However, there is a difference in the number of repetitive sequences present

exclusively to one set of sequences. Of these repetitive sequences, most prominent are the

specific families of Alu sequences.

This prompted us to investigate further the possible role of Alu repeats in retroviral

integration.
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Series Number of
Sequences in
the series

Number of
sequences
with repeats

Number
of Repeats
present

Average oc-
currence of
Repeats per
sequence

Maximum
number of
Repeats per
sequence

Number of
sequences
without
repeat(s)

BH Series 450 409 298 3.97 10 41
ASLV In-
tegration
sites

100 97 140 3.74 8 3

HIV in-
tegration
sites in
PBMCs

100 95 101 3.17 7 5

Table 2.5: Summary of the occurrence of the Repeat DNA sequences in different data sets: As described in the text, each
sequence from each data set was processed using the CENSOR program. The outputs generated were parsed using scripts to determine
sequence-repeat statistics and the results are summarized in this table.
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2.8.1 More on Alu repeats

2.8.1 More on Alu repeats

Less than 2% of the human genome ‘codes’ for something. Of the rest of the bulk of DNA

the highly repetitive DNA sequences account for more than 50%. Alu elements are each a

dimer of similar but not identical fragments of total size about 300 bp (44). Each element

contains a bipartite promoter for RNA Polymerase III, a poly(A) tract located between the

monomers, a 3′-terminal poly(A) tract, numerous CpG islands and is flanked by short direct

repeats (45). Alu comprise more than 10% of the human genome and are capable of retropo-

sition (45, 46). Insertion of an Alu element into a functionally important genome region or

other Alu-dependent alterations of gene functions cause various hereditary disorders and are

probably associated with carcinogenesis (45, 47, 48, 49). In total, 14 Alu families differing in

diagnostic mutations are known (50). Some of these repeats and repeat families present in

the human genome, are polymorphic and relatively recently inserted into new loci (51). Alu

copies transposed during ethnic divergence of the human population are useful markers for

evolutionary genetic studies (45, 47). Alu repeats have been associated with microsatellite

repeats (44). It has been suggested that Alu repeats may be contributing to the origin of the

microsatellite repeats (52). There are evidence to suggest that there is indeed a mechanism

which enables the retroviruses and LTR-transposons to target specific chromosomal regions

for integration (25). Alu has been deemed to be associated with retroviral integration (44).

This has also helped make quantitative assays to estimate HIV integration (53). Another

report (54) also suggests that the Alu repeats are associated with retroviral integration sites/

junctions and can be used to quantify retroviral integration.

2.9 Oligonucleotide analysis

In addition to the motif detection we also carried out analysis of the specific oligomers present

in the integration sequences. This is a computationally less demanding method than motif

detection. However it is limited to finding hexamers from a given set of sequences which are

consistent and rare. The analysis was carried out as follows.,

1. Hexamers were identified in each sequence

2. Scores for each of the hexamers in the sequences were obtained using the Karlin’s
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2.9. OLIGONUCLEOTIDE ANALYSIS

approach (55), as follows:

(a) Dinucleotide probability distribution for a sequence was obtained i.e. (pAA, pAC , . . . , pTT )

(b) Similarly probability of occurrence of each hexamer in a given sequence was ob-

tained. For example, p = p(ATTGAC) = pAC .pGA.pTG.pTT .pAT

Likewise probability for each hexamer was calculated based on its di-nucleotide

composition.

(c) The probability was obtained under the assumption of randomness,

q = p(ATTGAC) = (0.25)6 .

(d) The score for a pattern was obtained using si = log(qi/pi). Likewise, score for

each hexamer was generated.

3. Frequency distribution of the scores was obtained. The data were scaled so that si > 0

for all is without the skewness of the distribution which is positive in majority of the

sequences.

4. Weibull probability distribution fitted will to such data scores. The probability distri-

bution function has two parameters p (shape) and q (scale) and is given by

f(s, p, q) =
p

q

(
s

q

)p−1

e(s/q)p
(2.1)

5. The parameters of the distribution were obtained for the score data of each sequence

using Maximum Likelihood Estimation (MLE) method.

6. A threshold score s0 was obtained by solving,

P (S ≥ s0) = e−(s0/q)p
= 0.05 (2.2)

7. A subset of patterns for scores S
′

= {si} for {si} ≥ s0 was obtained

8. The patterns corresponding to these scores were identified in the sequences as ‘rare’

patterns.

9. The above steps from 3-8 were repeated for all the sequences in each group, thereby

generating a list of patterns whose chances are rare in the respective sequences.
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2.9. OLIGONUCLEOTIDE ANALYSIS

Such patterns were identified from each sequence of in vivo set (2kb) and those having

more than 40% occurrence in the sequences of this set which are listed in the Table 2.6.

The percentage occurrence of these patterns in sequences of original BH series are shown in

column (II), while the occurrence in invitro sequences is shown in column (III) of Table 2.6.

450 sequences were randomly simulated using first order Markov chain (56) simulator and

the occurrence of these patterns was observed in the sequences, which is as shown in column

(IV) of Table 2.6. It can be seen that certain hexamers are rare, but consistently present in

the BH series (1) of sequences.

S.No. Pattern In vivo Invivo Simulated∗∗

I II III IV

1. TCACGn (p1) 55.47 12.82 5.50 4.76
2. CGTGAn (p2) 53.38 16.08 7.23 5.33
3. GCGTGn (p3) 53.14 17.94 10.09 5.33
4. CGAGAn (p4) 49.88 15.61 8.25 9.76
5. TCTCGn (p5) 48.71 16.08 8.25 12.38
6. CGCCTn (p6) 46.85 22.37 2.75 12.61
7. CACGTn (p7) 45.22 11.65 5.50 5.00
8. ACGTGn (p8) 44.75 9.09 3.66 6.90
9. AGGCGn (p9) 44.05 19.34 7.33 6.90

10. CGTGGn (p10) 43.12 12.82 6.42 5.47
11. CTCGGn (p11) 41.72 15.15 4.58 6.67
12. CACGCn (p12) 41.25 17.01 2.75 14.04
13. GGCGCn (p13) 39.86 14.21 4.58 14.28
14. CGTCTn (p14) 39.62 13.51 5.50 6.90

Table 2.6: Hexamer Analysis.

The occurrence of these patterns in the original BH (1) series sequences was observed.

The table indicates the percentage of sequences possessing the above pattern at least once.

The ‘*’ indicate that the difference between the percentage of occurrence of all fourteen

patterns of group I and IV, Table 2.6 is statistically significant with p < 0.0001 using z− test

for proportions. In other words, these patterns do occur with high proportions in in vivo

sequences but in random sequences, their proportion was significantly low. It can be seen in

Table 2.6, that the pattern has ‘n’ as the end nucleotide for each hexamer. We did a further

analysis to check if there is any particular nucleotide that is preferred at the last position.

The results are shown in Table 2.7.
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Serial Number Pattern Distribution of bases at n Total Out of 429 sequences
A C G T

1. TCACGn 64 92 31 51 238
2. CGTGAn 37 28 79 87 229
3. GCGTGn 81 28 77 42 228
4. CGAGAn 22 89 27 76 214
5. TCTCGn 69 48 60 32 209
6. CGCCTn 29 71 80 21 201
7. CACGTn 40 41 65 48 194
8. ACGTGn 57 45 41 49 192
9. AGGCGn 13 49 45 82 189

10. CGTGGn 34 44 21 86 185
11. CTCGGn 9 87 58 25 179
12. CACGCn 31 103 12 31 177
13. GGCGCn 46 63 45 17 171
14. CGTCTn 28 84 30 28 170

Table 2.7: Probability chart showing probability of finding a particular nucleotide at the last position on the hexanucleotide.
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2.10. PATTERN RECOGNITION IN RETRO-VIRAL INTEGRATION GENOMIC SEQUENCES

It can be further seen that the position number 6 in the hexamers, is fuzzy to some extent,

however, there is still a base preference at that position in each of the patterns mentioned in

Table 2.7.

The sequences obtained from the Schroeder et al. (1), were classified using Kmeans

clustering method. In every class some patterns indicate dominant occurrence. The algorithm

has to be provided with present number of classes (in a sense it is a guided clustering). In

this case the sequences were clustered into 15 classes. The assumption being, ones dominant

pattern per class, and one class where none are dominant or all are equally dominant. Thus

it can be concluded that the sequences preferred by the HIV provirus for the integration are

enriched in certain oligomers.

2.10 Pattern recognition in retro-viral integration genomic se-

quences

We initially started with AY-series (30), that contains the HIV integration sites as occurring

in HeLa cell line and H9 cell line. There is another set deposited by the same group mentioned

in the same paper that is the data for the integration sites of MLV in HeLa cell line. Our

initial data was taken only from the those cell lines where ‘HIV’ integrations were studied.

2.10.1 Methodology

We started with looking for the ‘consistent’ tetramers in the given dataset. There are about

519 such sequences. However, the variation in their length is very high (length from 7 bases

to 250+ bases). For the ease of handling of data and in view of further interpretation of the

results, we decided to utilize only those sequences with length ≥ 100 bases. We used 230

such sequences for our analysis. In these sequences we counted the number of occurrences

of each tetramer (with alphabet size of 4 i.e. A, C, G and T, there are 44 i.e. 256 possible

tetramers), that occurs in each of the sequences. We found only four such tetramers. So

we decided to look for the trimers (43 = 64 possibilities). We found that 16 trimers were

present in more than 80% of the sequences. When we tried to look for the same trimers

in the omitted sequences (sequences less than 100 bases in length), the same trimers were
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2.10.1 Methodology

found to be consistently present in most of the sequences. We further decided to study these

particular 16 trimers. Most of these trimers are AT-rich. Multiple sequence alignment on

these sequences did not yield interpretable results. Thus, we decided to embark upon a

different and somewhat novel approach.

We substituted all the consistent trimers with single lettered code such that we now had

a set of sequences which were represented only in terms of the consistent 3-mers present in

the dataset. We used single letter codes for the amino acids to represent these trimers. We

performed a multiple alignment of such substituted sequences. At this point many patterns

appeared from the alignment. In particular only five trimers could be seen which were present

consistently in most of the sequences, were at a similar position in the different sequences

and were separated by a similar distance from each other across the sequences. The following

five trimers were found to be similar in distribution across the sequences viz. C/GAA, AAA,

ATT, TTT. Of these we found 2 sets of 2 trimers each that always occurred next to each

other. These were C/GAA & AAA and ATT & TTT. So we took them to be C/GAAA

and ATTT. There was also a AAA occurring away from both the tetramers in the middle.

With this information we constructed the following regular expression [CG]AAA.*AAA.*ATTT.

Everything within the square brackets ‘[ ]’ is an alteration. This regular expression will match

everything that starts with a C or a G and is followed by three As, followed by any nucleotide

for any number of times, followed by three As followed by any nucleotide for any number of

times, followed by the sequence ATTT. This is a predominantly AT-rich sequence. However,

because of the ‘.*’ construct in the regular expression, it is ‘greedy’ and will match with

the largest length possible for any given query sequence. To make this regular expression

stringent, we decided to include a distance parameter instead of the ‘.*’. So we replace ‘.*’

with ‘.{lowerlimit,upperlimit}’ where the lower limit is the distance in terms of number

of characters that are present between two given sub-sequences. It was decided to look at

the distance profile of the distance between the two motifs at the end and the AAA in the

middle. A script was written to compute all possible distances between these two in all the

sequences. We looked at the bi-variate distribution pattern of these sequences. The bivariate

distribution showed a positive skew, and a peak was observed at the distance of 0 - 50 for

both the regions. As the length of first motif is 4 bases and that of second is 3 bases, we took
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2.10.2 Analysis using regular expression

the distances between 5 to 50 instead of 0 to 50. We also found 2 more peaks at 51 - 100 and

0 - 50 respectively, for first distance the second distances. So our Regular Expression now

became:

[CG]AAA.{5,50}AAA.{5,50}ATTT

With the distance between the sequences thus defined, we decided to look for consistent

motifs in the 5 - 50 base long region that separates the given three subsequences. To obtain

those sequences specifically we changed the regular expression to

[CG]AAA(.{5,50})AAA(.{5,50})ATTT

According to the regular expression syntax, the region enclosed by round brackets can

be isolated/consumed. So we gathered such ‘spacer’ sequences from the various data sets

we had downloaded from the NCBI (1, 2, 30). We call the ‘spacer’ sequence that separates

[CG]AAA from AAA as the left hand sequence and the one between the AAA and ATTT as

the right hand sequence.

Validation We looked at the ‘consistent’ trimers present in the in between sequences.

There was a clear pattern that was seen in the BH series sequences (1) and the AY (2) series

sequences. In the left hand sequence an ‘AAA’ was clearly seen to be present in majority of

the sequences. On the right hand sequence a ‘TTT’ was seen to be present in the majority of

the sequences. We wrote a script that will consider a true match if and only if the left hand

side contained ‘AAA’ and right hand side contained ‘TTT’. The results obtained clearly

showed that the BH series is different than the randomly generated sequences. However,

statistically only the left hand side gave us unambiguous results, there was a lot of ambiguity

seen in the right hand side sequence. Data generated only from the left hand side was taken

for further analysis.

2.10.2 Analysis using regular expression

We ranked the occurrences of the consistent trimers in the left hand side sequences. We did

Spearmanns rank correlation test. We plotted a classification tree taking all the 6 datasets

viz.,
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2.11. CONCLUSION AND SUMMARY

1. HIV with SupT1 (the BH series by Schroder et al. (1) )

2. HIV with PBMCs (Mitchell et al. (2))

3. HIV with HeLa and H9 (the AY series, Wu et al. (30) )

4. HIV with IMR90 (PLOS Biology paper, (2))

5. MLV with HeLa (Wu et al. (30) )

6. ASLV with 293T-TVA ((2))

The last 2 datasets i.e. the MLV on human cell line and ASLV on 293T-TVA cell line were

clearly differentiated from the rest of the sequences. AY - aeries was shown to be closer to

the BH - series, IMR90 was close to the PBMCs. Thus we have dataset wherein three kinds

of retroviruses were used to infect six different kinds of cell lines. The Spearman rank is

calculated as follows:

Rs = 1−
(

6σd2

n3 − n

)
(2.3)

Where, Rs is the Spearman rank, d is the difference between the ranks, n is the number of

ranks in the data. We found that the the types of n-mers enriched in the flanking regions of

the insertion sites were distinct for different types of viruses. This again points to recognition

of some kind of higher-order structure in the genome rather than a specific sequence. We

found no particular pattern/distribution for any of the specifically enriched 3-mers.

2.11 Conclusion and Summary

Thus it can be concluded that the HIV integration target sites are specific within the genome.

Moreover, similar viruses infecting similar hosts target similar sites. Whereas pseudotyped

viruses target atypical sequences (which are usually not encountered in the natural host).

Given that the sequences flanking the HIV integration sites have specific properties, it should

be possible to computationally predict integration sites using neural-network like methodolo-

gies.
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Chapter 3

On Selecting Proper Control
Sequences for Motif Detection
Exercises

3.1 Introduction

A number of well-established probabilistic methodologies (1, and references therein), such as

MEME, SeSiMCMC, MotifSampler, etc., attempt to find consistent and statistically significant

patterns in a set of biological sequences (DNA, RNA, or protein). Such consistent patterns

are often referred to as motifs. It is well-known that genomic motifs often represent highly

conserved elements that may have important regulatory/functional roles. For example, ge-

nomic motifs could represent cis regulatory elements (2), retroviral insertion sites (3), etc.

RNA motifs could represent pseudoknot structures that are now known to play important

role in translation regulation, a feature that has been utilized in drug design (4). Motifs

in proteins (seen as sequences of amino acids) often represent binding sites for interacting

partners or chemically active sites – again a feature important for drug design (5). From an

evolutionary perspective, motifs that are common across species are useful for deciphering

phylogenetic relationships (6, 7).

Motif detection methodologies have become an important tool for biological sequence

analysis primarily due to the size of the commonly available sequence data. Recent high-

throughput technologies have also created a need for the automation of data analysis pipelines

that include motif detection as an important step.
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3.1. INTRODUCTION

Position A C G T Motif
1 0.000000 1.000000 0.000000 0.000000 C
2 0.000000 1.000000 0.000000 0.000000 C
3 0.000000 0.002381 0.000000 0.997619 T
4 0.000000 1.000000 0.000000 0.000000 C
5 0.626143 0.075790 0.191495 0.106572 A
6 0.000000 0.005125 0.994875 0.000000 G
7 0.000000 1.000000 0.000000 0.000000 C
8 0.000000 1.000000 0.000000 0.000000 C
9 0.000000 0.004610 0.000000 0.995390 T

10 0.000000 1.000000 0.000000 0.000000 C
11 0.000000 1.000000 0.000000 0.000000 C
12 0.000000 0.810820 0.000000 0.189180 C

Table 3.1: This table depicts a PSPM for the first motif as shown in Table 3.4. The general
structure of the PSPM is as follows, it has number of rows equal to the length of the motif
and number of columns equal to the length of the alphabet. As we are dealing with DNA
sequences the alphabet size is 4 and hence there are 4 columns. The number in the first
column denotes the position of the base. Each subsequent column shows the probability of
occurrence of the particular base (column heading) at the particular position.

In general, probabilistic motif search methodologies attempt to infer the unknown loca-

tions of a motif in the user-supplied sequence data, by comparing the data with the background

in a probabilistic manner. Simultaneously, they estimate parameters of the motif model (e.g.

see Table 3.1).

If required, the same methodologies can additionally estimate parameters of the back-

ground model. Alternatively, a motif detection algorithm can be seen as a device for arriving

at a partition of given input sequences into the motif part and the background part.

This is achieved by formulating the motif detection problem as a missing data problem

(8, 9). In the context of motif detection, the input sequences in which motifs are to be

discovered (and motif model parameters to be estimated) is the observed data. Missing

observations, in this context, are the locations of one or more such motifs in the observed

sequence data. The missing-data problem is formulated in terms of the likelihood function

of the motif model parameters conditional upon the observed and the unobserved data. In

a Bayesian formulation, the likelihood function gets replaced by the posterior distribution

that incorporates any prior information about model parameters and unobserved data in

addition to the likelihood function. To estimate model parameters and discover the most

likely value of the motif locations, the likelihood function (or the posterior distribution) is

either maximized, or sampled.
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3.1.1 Probabilistic Models of Genomic Sequences

Deterministic maximization is usually performed using the expectation-maximization (EM)

algorithm (10). Sampling-based approaches usually resort to a variant of the Markov Chain

Monte Carlo (MCMC) method called Gibbs sampling (11). Detailed development of prob-

abilistic motif detection algorithms of either type can be found in, e.g., (12, 13, 11, 14). A

survey of some of the most prominent motif detection tools can be found in Section 3.1.2.

The work presented in this chapter deals with the choice of the background for probabilis-

tic motif detection. In the rest of this section, we discuss some of the key concepts and issues

related to probabilistic motif detection. Materials and methods are discussed in Section 3.3,

and results are presented in Section 3.4. This chapter ends with a summary (Section 3.5) of

the key results of this work and conclusions drawn from them.

3.1.1 Probabilistic Models of Genomic Sequences

Probabilistic models of genomic DNA sequences are motivated by the fact that real genomic

DNA sequences are highly complex, hierarchically-organized entities that are shaped primar-

ily through the forces of biological evolution. Furthermore, sequences of functionally distinct

components of genomic DNA such as intergenic regions, promoters, genes, introns, exons,

and structural elements (centromeres, telomeres) all have very different statistical properties.

Finally, both short- and long-range correlations (15, 16) exist within the primary sequence of

a genome for a variety of reasons, known or unknown. For instance, while short-range correla-

tions on the length scale of say a gene or a promoter are usually associated with the complex

machinery for gene expression and its control, one of the reasons for long-range correlations

could be the chromatin context (i.e., hierarchical coiling of the primary DNA strand into

highly compact higher-order structures) that can bring distant parts of the primary sequence

in close physical proximity thus inducing functional correlations between them (17).

Perhaps the most useful models of genomic DNA sequences have to be probabilistic in

nature given the complexity and variability of genomic DNA, as also the lack of precise

knowledge about genomic DNA as a highly complex and hierarchical system. The sim-

plest probabilistic model of a genomic DNA sequence is that which assumes independent,

identically-distributed (iid) base alphabet (A,C,G,T) with pre-specified probabilities. How-

ever, the presence of long-range correlations in a genomic DNA sequence necessitates the
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3.1.1 Probabilistic Models of Genomic Sequences

use of models that allow for greater complexity. The simplest class of models that allow

for inclusion of sequential correlations in a systematic manner are the Markov models (18).

Probabilistic models that allow for greater complexity to be modeled include hidden-Markov

models and stochastic grammars (19, 18, see for an overview).

A Primer on Markov Models

The order-k Markov model of an unending (practically, very long) genomic sequence is defined

as the set of probabilities for a single base A, C, G or T to follow an oligonucleotide sequence of

length k. The complete specification of a Markov model of order k thus involves specification

of 4k (i.e., the number of possibilities for oligonucleotides of length k) × 4 (i.e., the number

of bases) probabilities, and can be represented as a 4k × 4 matrix. An order-0 Markov

model thus corresponds to the aggregate probabilities of occurrence of the four DNA bases

in the sequence they represent. Markov models of orders 0, 1, and 2 are illustrated for a

randomly-picked human DNA sequence of length 2400 in Fig. 3.1.

In the language of probability theory, each entry in this matrix corresponds to the con-

ditional probability P (b|b1b2 . . . bk) of base b to follow oligonucleotide b1b2 . . . bk, where both

b and bi, 1 ≤ i ≤ k, assume values from the set of DNA alphabets {A, C, G, T}. These

conditional probabilities are sometimes referred to as transition probabilities. By construc-

tion, each row of a Markov matrix/model is normalized; i.e., the sum of all entries of a row

is 1. Parameters of an order-k Markov model of a genomic sequence (i.e., all entries of the

matrix as described above) are estimated from sufficiently long DNA sequences by counting

all occurrences where a specific oligonucleotide sequence b1b2 . . . bk precedes given base b.

Visualization of a Markov model

Jeffrey devised a method to represent genomic sequences in form of Chaos Game Repre-

sentation (CGR), the construction of which is described in detail in (Jeffery, 90) (22), and

illustrated in Fig. 3.2. A CGR plotted at a k-mer resolution is equivalent to a Markov model

of the k − 1 order (22, and references therein): The CGR is thus a useful way of visualizing

an order-k Markov model.
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3.1.1 Probabilistic Models of Genomic Sequences

A sequence of length 2400 picked from a random location in the human genome:

>ref|NT_006713.14|Hs5_6870:15287525-15289625 Homo sapiens chromosome 5 genomic contig, reference assembly

ATTTTCTTCTGCTTACTTTGAGTTTAATTAGCCCTCCTTTATCTAGTTACCTAAAATGGAAGCTTAGGTTTTTTAAGTCT

ATTTCCCTTTCTAATATATGCAACCAATGTTATAAATTTCCCTCTATGCACTGCTTTTGCTGCCTCTCATAAATTTTGGT

AAGTTATGTTTTCATTTCATTTAGTTCAAAGTATTTTTAATTTCTCTTCAGATTTTTCTTTTGACCCATGTGTTATTTAG

AAGTATGTTGTTTATGGCCAGGTGTGGTGGCTCACACCTGTAATCCCAGGATTTTGGTAGGCCCAGGAGACCAGATTGCT

TGAGCTCAGGAGTTCAAGGCCAGCCTGTGCAACATGGAGAAACCTCGACTCTACAAAAAAAAGAAAAATCAGCCAGGTGT

GGTGGCACATGCTTGTAGTCCCAGCTACTTAGGAGGTTGAGGTGGGAGGATTGCTTGAGCCCAGGAAGCAGAGGATGCAG

TGAGCTATGATTTTGCCACTACACTCCAGCCTCAGTGACAGAGTAAGACCCTGTCTTAAAAAAAAAAAAAAAAAAAAAGT

ATGTTGCTTAATCTCCACATATTGTTTGGGGCTTTCCAGTTATCTTGCTGTGATTGATTTCTAGATTAATTCCATGTGGT

TTGAGAACAGATATTGTATGATATCTATTCTTTTAAATTTGTTAAGATGTGTTTAATGGCCCAGAATGTGGTCTGTCTTG

GTAGCTGTTCCATGTGAGCTTGAGAAGAATATATATTCTGCTGTTATTGGATAAAGTAGTCTACAGATATCAATCATATC

CAGCTGATTGACGGTGTTGTTGAGTTCAACTATGTCCTTACTGATTTTCCAGTTGCTGAATTTGTCCATTTCTGATAGAG

GGGTGCTGAAGTCTTCAACTATAACAGTAGATTCATTTATTTCTCCCAACAGTTCTTTCAGTTTTTGCCTCCTATATTTT

ATTGATCTGTTGTTAGGCAAATATACATTAAAGATTGTTATGTCTCTTGCAGAACTGACTCCTTTATCATTACGTAATAC

CCTTCTTTATCCTTGATAACTTTCCTTGCTTTGCATTCTGCTCTATCAGAAATTAATACAGCTGGCCGGGTGCGGTGGCT

CACGCCTGTAATCCCAACACTTTGGGAGGCCAAGGCAGGCAGATCACTTGAGGTCAGGAGTTCGAGACCGGCCTGGCCAA

CATGGCAAAACCTTATCTCTACTAAAAATAAAAAAAACTAGCTAGGCATGGCAGCACGTGCCTGTAATCCCAGCTACTCA

GGAGGCTGAGGCAGGAGAATCGCTTGAGGTTGCAGTGAGCTGAGATTGCACCACTGCACTCCAGTCTGGATGACAGAGCG

AGACTCTGTCAGAAAGAGAGAAAGAGAGAGAGAGAGAAAGAGAGATAAAGAGAGAAAGAGAGAGAGAGAAAGAAGAGAGA

GCAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAAAGAAAGA

GAAAGAAAGAAAGAAAGAAAAAGAAGCAAGCTAATTCTGCTTTGTTTTGCTTAGGACTGGCATCCATCCAATTACTTTTA

ATCTATATGTGTCTTTATATTTAAAGTGGATTTCTTGGCTGGGTGCGGTGGCTCATGCCTGTAATCCCAGCACTTGGGAG

GCCGAGGTGGATGGATCGTCCGAGGTCAGGAGTTCGAGATCAGCCTGGCCAACATGGTGAAACCCCGTCTCCAATAAAAG

TACAAAAATTAGCTGGGCGCGGTGGTGGGCGCCTGTAATCCCATCTACTTGGGAGGCTGAGGCAGGAGAATTGTTGAACT

CGGAAGGCAGAGGTTGCAGTGAGCCGAGATTGCACCACTGCACTCCAGCCTGAGCCACAGAATGAGACTCTGTCTCAAGA

AAAAGTGGACTTCTTGTAGACAACATATAGTTTCATTGGGTCTTATTTTTCTTATTCACTCTAACAATCTCTGTCTTCCA

ATTGGTGCATTTGGAGCATTGATATTCACAATATTTATTAATACAGTTGGATTAATATCTACCGAATTTGTTGCTCTTGT

TCTTTGTTCCTATTTTTGTTT

Order-0 Markov model of the above sequence. An order-0 Markov model is the probability of occurrence
of each nucleotide in the sequence. There is no positional correlation information in the 0th order Markov
model.

A C G T
0.224654926226 0.29128986197 0.303188957639 0.180866254165

Order-1 Markov model for the same sequence. Here, each row represents the base at any given position
in the sequence. Each column of this row represents probabilities for the base in the following position.
For example, for this sequence, the probability that an A will be followed by another A is 0.3366, and the
probability that a C will be followed by a G is 0.06.

A C G T
A 0.33660130719 0.117647058824 0.303921568627 0.241830065359
C 0.318421052632 0.234210526316 0.0605263157895 0.386842105263
G 0.341101694915 0.209745762712 0.209745762712 0.239406779661
T 0.193396226415 0.188679245283 0.25786163522 0.360062893082

Order-2 Markov model for the same sequence. Rows correspond to all dinucleotide possibilities, and
columns correspond to all four possibilities for the following base. Thus, given the two preceding bases
(i.e., row), the columns represent probabilities for the base in the following position. For example, the
probability of an G to follow TC is 0.05.

A C G T
AA 0.45145631068 0.0922330097087 0.26213592233 0.194174757282
AC 0.333333333333 0.194444444444 0.0555555555556 0.416666666667
AG 0.47311827957 0.155913978495 0.198924731183 0.172043010753
AT 0.216216216216 0.189189189189 0.195945945946 0.398648648649
CA 0.214876033058 0.173553719008 0.396694214876 0.214876033058
CC 0.415730337079 0.202247191011 0.0786516853933 0.303370786517
CG 0.347826086957 0.173913043478 0.304347826087 0.173913043478
CT 0.183673469388 0.210884353741 0.272108843537 0.333333333333
GA 0.316770186335 0.0869565217391 0.39751552795 0.198757763975
GC 0.30303030303 0.262626262626 0.0606060606061 0.373737373737
GG 0.282828282828 0.30303030303 0.131313131313 0.282828282828
GT 0.16814159292 0.176991150442 0.29203539823 0.362831858407
TA 0.292682926829 0.146341463415 0.162601626016 0.39837398374
TC 0.25 0.258333333333 0.05 0.441666666667
TG 0.225609756098 0.219512195122 0.256097560976 0.298780487805
TT 0.197368421053 0.179824561404 0.271929824561 0.350877192982

Figure 3.1: Markov models of a randomly picked sequence.
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3.1.1 Probabilistic Models of Genomic Sequences

Figure 3.2: Construction of the CGR: A CGR organizes oligomers of fixed length in a
hierarchical fashion over a square. The CGR construction is illustrative in panel (a) (fig-
ure adopted from Goldman (20)). A fCGR is a color-coded representation of the relative
frequency-CGR (i.e., frequencies of oligomers normalized by the highest frequency). Color
bar at the bottom is the key to these relative frequency values. Panels (b)–(e) are 8-mer
fCGRs for sequence data from the following sources: (b) sequences picked from random lo-
cations in the human genome. (c) sequences generated by RSAT (21) using the 8th order
Markov model. (d) sequences generated randomly assuming 60% GC content. (e) sequences
generated randomly assuming equal probabilities for all the bases.
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3.1.1 Probabilistic Models of Genomic Sequences

An initial application of CGR demonstrated that genes and intergenic regions can be

differentiated visually from their CGRs (22). It was later demonstrated that the CGR alone

is able to classify prokaryotes down to the genus using randomly-picked fragments of their

genomes (or whole genomes when small) (23, 24). Furthermore, the information from CGR

has also been shown to be useful in whole genome analysis (25). This is interesting because

conventional sequence comparison approaches (such as Multiple Sequence Alignment (26))

assume that sequences being compared come from a specific region (e.g., 16s rDNA). This

is yet another illustration of the usefulness of Markov models considering the one-to-one

correspondence between a Markov model and the CGR (27).

As a concrete example of the utility of the CGR, we have plotted (Figure 3.2) the frequency

CGR (fCGR) for DNA sequence data from a variety of sources. Frequencies plotted are

relative frequencies normalized by the maximum frequency. In other words, to plot a fCGR,

the frequencies of oligomers are normalized by the frequency of the most occurring oligomer,

and color coded accordingly. The color bar in the figure is the key to the relative frequency

value. Panel (a) shows a schematic used to construct CGR as illustrated by Goldman (20).

Each fCGR is plotted at a resolution of 8 mers. In Panel (b), the fCGR is plotted for

sequences downloaded from random locations in the human genome. In Panel (c), the fCGR

is plotted for sequences generated using a 7th order Markov model in RSAT (21). This model

was generated from a single contig in the human genome (21) (personal communication). In

Panel (d), the fCGR is plotted for sequences generated assuming a 60% GC content. In Panel

(e), the fCGR is plotted for sequences assuming equiprobability for all the nucleotides. Thus

in the Figure 3.2 panels (b) through (e) are made of exactly 48 i.e. 65,536 points plotted

using the scheme as illustrated in panel (e).

It can be seen that in the CGR of sequences picked randomly from human genome (panel

b) and CGR for a sequence generated from order-7 Markov model (panel c) appear similar.

However, on careful examination it can be seen that the CGR of sequences from the human

genome have a more well-defined structure as compared to the CGR of sequences generated

from the order-7 Markov model. When sequences are generated randomly, assuming indepen-

dence of successive nucleotides and a probability distribution (pA = pT = 0.2, pG = pC = 0.3)

corresponding to a total GC content of 60%, the structure of the corresponding CGR (panel
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d) is not as complex as that in panel b. The CGR of iid nucleotides with the probability

distribution (pA = pT = pG = pC = 0.25), as expected, has no discernable structure.

These examples illustrate that fCGR is a useful tool for visualizing the structure of and

the nature of sequential correlations in DNA sequences.

3.1.2 Survey of Available Motif Search Algorithms

In early 90s there were vast improvements in the DNA sequencing technology making it

available to a number of establishments in the world. When the amount of sequence data was

very small the comparisons could be done manually. As the amount of sequence data available

in the public domain increased exponentially it became infeasible to analyze these sequences

manually. This evolution in sequencing technology coupled with simultaneous improvements

in computers made increasingly advanced computers a perfect tool for analyzing the vast

sequence data being produced. Most of the tools described here were primarily created to

analyze protein sequences. However over the number of years most these algorithms and

programs have been adapted to work with DNA and sequences as well. Hudak and McClure

have compared various algorithms for motif detection using protein sequences as test data

(28).

One of the earliest motif detection algorithms to be published was the BLOCKMAKER (29).

Briefly, the algorithm searches for words consisting of codons (trimer) in a dataset and adja-

cent codons with highest frequencies are combined motifs (30).

Another algorithm uses the iterative protocol as described by Karlin & Broccheiri and is

known as ITERALIGN (31). The method produces alignment blocks that accommodate indels

and are separated by variable-length unaligned segments (31). The blocks are derived from

the alignment of the consensus sequences and are improved by displacement of individual

sequences. The blocks are defined by a consensus residue and conservation index.

PIMA (Pattern-induced multi-sequence alignment) is an algorithm that uses secondary

structure dependent gap penalties in multiple sequence alignment (32). As this algorithm

uses more information than the sequence itself it is able to to accurately align structural

boundaries in a set of homologous sequences.
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PROBE is another method that involves multiple sequence alignment and model generation

using single short sequences (33). PROBE constructs an alignment model of the protein fam-

ily through a combination of Gibbs sampling, a genetic algorithm database searches using

progressively more refined alignment models (33).

The MEME is another well-known, well-cited and well-respected algorithm for motif finding

in DNA and protein sequences (34). This algorithm uses a mixture model for determining

the motifs and their positions in the training sequences (12), and uses the Expectation-

Maximization (EM) method for maximum likelihood estimation in the context of incomplete

(missing) data problems (10).

SAM is another algorithm based on Gibbs sampling (35, 36).

Approximate matches using ‘Edit distance’ have been proposed by Wang et al. (37).

In this algorithm a consensus sequence is arrived at from related protein sequences. This

algorithm works in conjunction with the BLOCKS algorithm described by Henikoff & Henikoff

(38).

3.1.3 Confounds in Motif Detection

In addition to the complexity and the long-range correlations in the genomic sequences, any

motif detection exercise needs to worry about confounds – specifically, the repeat sequences

present in the genome.

It is generally believed that only 2% of of the entire human genome consists of coding

regions, i.e., genes that code for a protein/RNA. The rest of the genome was considered to

be made of “junk” DNA and the understanding of the function of this majority of genomic

DNA is only emerging now (39, 40). These non-coding/intergenic or ill-understood regions

are known to be made up, predominantly, of repetitive stretches of DNA. For a note on

repeat families and especially the Alu-repeats see Chapter 2. It is believed that repeats play

important role in many biological processes (e.g., retroviral integration (3), heterochroma-

tinization (41), etc.) and thus cannot be ignored completely from study. Similarly a large

portion of the genomic DNA is also made up of satellite DNA (42, 43), which has a very spe-

cific function and plays important role in maintaining the structural integrity of the genome

during replication. These sequences may or may not be part of relevant motifs when such an
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exercise is undertaken to study role of motifs in regulation of gene expression. The function

of many repeat sequences still remains unknown.

Any such repetitive element that occurs with high propensity in the data being analyzed

tends to be picked up as a motif because of the very nature of probabilistic motif detection

algorithms. This is an undesirable outcome of a motif detection analyses if the purpose not

the discovery of such repetitive elements itself. It is a common practice to minimize the effect

of such repetitive elements by masking the repetitive element(s) during analysis such that

these part(s) of the sequence(s) are replaced by a single character. When DNA sequences are

masked the replacing character is usually N and it is X when protein sequences are masked.

Fundamentally, all present day probabilistic motif detection algorithms lack the ability

to distinguish motifs from repeats because that would necessitate a fundamental revision of

probabilistic models of genomic sequences to include statistically distinguishable models of

repeats, and appropriate modifications in the motif detection formalisms. We believe that

this may be a difficult task, and may lead to a steep increase in the computational demand

of such a methodology.

3.1.4 The Background Model: Why Is It So Important?

At the heart of all probabilistic motif search methodologies lies such a probabilistic model

of biological sequences. This model usually comprises of a background part and a motif

part. A motif is usually modeled as a sequence of independent nucleotides with probability

distributions that depend on the position of the nucleotide within motif (see Figure 3.1 an

example). On the other hand, the background is usually modeled using a Markov model of

appropriate order.

It is a common practice (in single-species analyses) to choose the order and the parameters

of the background model so as to match some desirable characteristic of the genome (as

represented, usually, through a set of background sequences) to which the sequence data

being analyzed belongs. For example, requiring a match on the average genome-wide %GC

content alone corresponds to an order-0 model, while matching the average genome-wide

k-mer frequency profile corresponds to an order-(k − 1) Markov model. In the worst-case

scenario, parameters of the background model can be estimated using the same sequence
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3.1.4 The Background Model: Why Is It So Important?

data that is being analyzed for motifs as in the default background setting for MEME (12).

While the order-0 Markov model (i.e., independent nucleotides identically distributed (iid)

according to pre-specified probabilities) appears to have been employed extensively in the

early days of motif search (see, e.g., (44)), recent reports recommend the use of an order-3

Markov model for the same purpose (13, 45).

It could be argued that the general principle governing the choice of the background should

be as follows: In the context of the scientific problem being investigated, the background

should be statistically similar in all respects to the sequence data being analyzed except,

possibly, for the feature of interest (i.e., the motif) (46). More precisely, while the choice of

sequence data for motif search is governed by the scientific question being investigated (i.e.,

the alternate hypothesis), the appropriateness and choice of the background is dictated by the

corresponding null hypothesis (that the sequence data and the background are statistically

indistinguishable).

Choosing parameters of the background model (alternatively, an appropriate set of back-

ground sequences from which the background model could be built) correctly is of vital

importance to any motif search exercise. An improper choice of the background can lead

to unreasonable numbers of false positive/negative results or biologically irrelevant motifs.

This greatly diminishes the value and reliability of the conclusions drawn from such analyses:

Indeed, motif discovery methods have been criticized (47, 48) on the ground that they tend

to report false positives.

A comprehensive review of literature on the problem of background selection appears

in Marchal et al. (49) with a focus on motif detection in prokaryotes. Thijs et al. (13)

reports extensive in silico experiments, in the context of the Arabidopsis genome, on the

effect of the background model on the quality of motifs detected. The key observations and

recommendations of these two works taken together are as follows:

1. It is essential to use background models generated from genomic DNA so as to increase

the performance of motif detection algorithm.

Here, the term performance implies biological relevance and statistical significance of

the detected motifs.

2. It is desirable to use a background model of as high an order as possible.
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Practically, however, it becomes virtually impossible to generate models with order n ≥

6. This is because an enormous amount of background sequence data is usually required

to get adequate representation of all the 4n+1 n-mer frequencies used to estimate model

parameters.

Specifically, pseudo-counts added to compensate for unobserved occurrences of oligomers

not represented in the sequence data usually leads to deterioration of the quality of de-

tected motifs.

3. Order-3 or higher Markov models generated from the input sequence data for motif

detection itself, when used as background, severely hamper the ability of motif finding

algorithms to detect valid motif(s).

Apart from these two extensive studies, there exist no useful guidelines in the literature for

the choice of the background model order (especially for a complex genome such as the human

genome), to the best of our knowledge.

3.1.5 Motivation for the Present Work

We wish to investigate the effect of choice of background model on the biological relevance

and usefulness of the discovered motifs in the setting of the human genome. As a concrete

biological scenario for studying the role of the background on the quality of motifs detected,

we have chosen the problem of detecting motifs in and around HIV integration sites. This

problem has been extensively discussed in Chapter 2. Indeed, the work presented here has

its origins in the work presented in Chapter 2.

We first provide a brief summary of this problem of motif detection in HIV integration

target sites in the next section, in the context of the present work. In the following section,

we formulate our choice of the proper background for this problem.

3.2 Motifs in HIV Integration Sites

The problem of how the HIV selects integration sites in the human genome is an important

open problem in virology and human pathology. An understanding of this process will not

only shed light on the retroviral integration site selection process, it will also help design
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3.2. MOTIFS IN HIV INTEGRATION SITES

effective retroviral vectors for gene therapy. It is known that integration site selection not

only affects the ability of the virus to complete its own lifecycle (41), it also affects the host

(50). Let us briefly review what is known about HIV integration site selection; a detailed

discussion can be found in (51, and references therein) and Chapter 2.

HIV is a RNA virus that infects human T-cells and causes AIDS (Acquired Immuno-

Deficiency Syndrome) follows an intricate and highly regulated lifecycle. Briefly, HIV injects

its genomic RNA into the host cell. The genomic RNA of the virus is reverse transcribed

into cDNA, and is also translated to produce a few virus-specific proteins. This cDNA, virus-

encoded proteins, and some host-encoded proteins together form pre-integration complexes

(PICs) (52, and references therein). The PICs are then translocated to the nucleus where

they bring about integration of the viral cDNA into the host genome.

It was believed (53), until Schroeder et al. published their paper (54), that HIV integration

sites are randomly dispersed within the human genome. However, it was also known that

genomic locations where the viral cDNA integrates into the host genome control the fate

of the virus (for example, it was known that specific highly heterochromatic regions in the

genome (such as centromeric alphoid repeats (41)) are avidly avoided by the PICs). The role

of integrase in integration site selection had also been underlined (55).

Schroeder et al. (54) demonstrated that the distribution of HIV integration sites in

the human genome is far from random, and moreover, it is positively correlated with the

gene density on a chromosome. Later, it was also shown that different retroviruses have

distinct preferences for integration sites in their respective target genomes (56, 57). Using

GenBank-deposited sequences from previous studies (54) it was shown (58) that there are

definite base preferences for retroviral integration. In particular, HIV-1 shows a preference

for symmetric bases in the target genome (59). Our own previous work demonstrated that

HIV integration target sites are characterized by their unique chromatin context as defined

by specific consensus motifs. In passing, we note here that despite all these analyses, the

nature of HIV integration target sites needs further investigation for better characterization

(3).
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3.2.1 The Ideal Background for Motif Search in HIV Integration Data

Clearly, the primary bioinformatic tool for an in silico analysis of this problem of analyzing

the integration sites of the HIV in the human genome is motif detection. Indeed, all the

works mentioned in the previous paragraph involved a substantial bioinformatics component.

In the light of the discussion in Sec. 3.1.5, it may be said that the null hypothesis in this

context would be “HIV integration sites are random locations in the human genome”, whereas

the alternate hypothesis would be “HIV targets specific, non-random locations in the human

genome for integration”. Motif detection, in this context, is an attempt to weigh, albeit

indirectly, these two hypotheses against one another for a given dataset. In addition, it

attempts to characterize the integration sites by searching for consistent patterns specific to

the integration regions.

This formulation of the basic scientific problem under investigation clearly suggests that

the most appropriate background for the present motif search exercise would be a set of

sequences (of suitable length) picked from random locations distributed uniformly over the

entire human genome.

3.3 Materials and Methods

3.3.1 Overview of Analysis Protocol

This study was performed in three parts. Below we provide a quick overview of these three

parts, and the rest of this section elaborates upon their details.

1. Data preparation • This involved retrieval and pre-processing the HIV integration site

sequence data, retrieval and pre-processing of the background sequence data, building

Markov models (of orders upto 6) of the background sequence data, and sensitivity

analysis of the estimated model parameters.

2. Motif detection • We performed an extensive motif detection exercise for the HIV inte-

gration site sequence data against background models of orders upto 6 thus constructed.

For each background model, we used MEME (60) to detect 5 non-overlapping best motifs

with allowed length variation between 5 and 50.
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Background Description

MD-0 Order-0 Markov model generated from the input sequence
data itself. This is the MEME default background.

RP-0 Order-0Markov model built from 1000 sequences of length
10000 bases each, picked from random locations in the
human genome.

RP-1 Order-1 Markov model built using the above set of
randomly-picked sequences.

RP-2 Order-2 Markov model built using the above set of
randomly-picked sequences.

RP-3 Order-3 Markov model built using the above set of
randomly-picked sequences.

RP-4 Order-4 Markov model built using the above set of
randomly-picked sequences.

RP-5 Order-5 Markov model built using the above set of
randomly-picked sequences.

Table 3.2: Description of background models used for our motif detection excercises.

We also performed a similar exercise using the MEME default background model which,

in our case, was an order-0 Markov model constructed from the HIV integration site

sequence data itself. In Table 3.2 we summarize the various background models used

and what they mean.

3. Assessment of biological relevance • For each motif thus detected, we located its oc-

currences in the Genomatix promoter database using a profile match, and obtained the

corresponding gene information. For each order of the background model, we performed

a hierarchical GO-Term enrichment analysis of the corresponding genes thus obtained,

using AmiGO (61).

This analysis leads to the key result of this work that in a motif exercise, a properly

chosen background model leads to biologically more relevant and meaningful results.

98



3.3.2 Data Preparation

3.3.2 Data Preparation

HIV Integration Sequence Data

For the second part we used published sequences for HIV integration sites (54) and obtained

their flanking genomic sequences. The process of obtaining genomic sequences for our analysis

is described in detail in Chapter 2. We give an overview of the process here for the sake of

completeness.

Briefly, each submitted sequence from Schroeder et al. was compared with the NCBI

RefSeq under default settings1. Of the matching regions from the genome the best match

was selected (the match with maximum score and minimum E-value). If there were multiple

matches with identical scores and evalues the first match was chosen. From each of the

matches we generated genomic coordinates such that the match is in the center of a 2 kb

genomic region. These sequences were downloaded and became our starting point.

These sequences were processed through a locally installed copy of the CENSOR (62).

From the masked sequences the extent of repeats present in each sequence were calculated.

These sequences were ‘weighted’ inversely to the extent of repeats present such that the most

masked sequence(s) got least weight and least masked sequences got maximum weight. Thus

a sequence that contained no repetitive elements got a weightage of 1.0 and the sequence that

was completely masked got a weightage of 0.005 (MEME cannot accept sequences with weight

0). These sequences became our input sequences for the motif detection exercise using the

MEME (63).

Background Data, Models, Stability

Background Sequence Data. As discussed earlier, the most appropriate background in

the context of the present work consists of sequences picked from the human genome from

random locations. Such randomly-picked sequences can then be used to build Markov models

of any reasonable order. Using the Random Sequence Grabber tool (described below), we

downloaded 1000 sequences of length 10000 bases each, from random locations in the human

genome (build 36 v3 of the RefSeq at the NCBI). These sequences were then used to generate

Markov models of order 0 through 6 using GenRGenS (64).
1http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=9606
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The Random Sequence Grabber Tool. To the best of our knowledge, no tool/software/

program that enables downloading of sequences from random locations in a given genome

is available in the public domain. We thus designed and created a tool, called the Random

Sequence Grabber2, for this purpose. The structure of this tool is illustrated in Figure 3.3.

Briefly, a given genome is considered to be a single linear molecule starting with first nu-

cleotide of the first chromosome, and ending with the last nucleotide of the last chromosome.

This number is very large, and there are not many random number generators that can han-

dle such a large range. The computing environment/programming/scripting language called

python3, however, comes with an in-built implementation of the Mersenne Twister ran-

dom number generator (65) that has a very large period of 219937, and is thus perfectly suited

the purposes of this tool.

In the RefSeq database of the NCBI, the reference sequences for many genomes are stored

in chromosome-wise fashion. Each chromosome is in turn made of number of contigs. There

are almost always some non-sequenced regions in the chromosomes which show up as ‘Gap’.

Thus, a chromosome can be represented as a set of contigs separated by gaps. The length of

each contig and each gap is known. Using this information, a cumulative length table can be

constructed, such that each number corresponds uniquely to a contig or a gap.

The program generates n (predefined) random numbers. Each random number is checked

against cumulative lengths of contigs. The nearest bigger cumulative length is chosen from

the hash table. The program then looks for the information defined by that length. If the

number defines a Gap, a new number is chosen. If the number defines a contig, then start

s, and end e coordinates of the sequence to be downloaded are determined. This depends

on the length l of the sequence to be downloaded. It is ensured that the final coordinates

of the sequence lie within the same contig. If this condition is not met, a new number is

chosen. Coordinates are generated by adding and subtracting (length / 2) from the number.

These coordinates are used to generate the download URL. These URLs are written a to a

temporary file, and if a internet connection is available, then these sequences are downloaded

one at a time.
2Available at the http://sourceforge.net/projects/genome-seq-grab/. The source code is also avail-

able under the GNU-GPL version 3.0 or later
3http://www.python.org
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Figure 3.3: Algorithm used to pick a sequence randomly from the genome.
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A download URL is created using the generated coordinates and the template url4 such

that the sequences are downloaded in the FASTA format. It is in principle possible to download

the sequences in GenBank, XML, ASN.1 or any other standard format as available at the NCBI.

We chose the FASTA format because it is the most commonly used input sequence in many

motif detection algorithms.

Following Figure 3.4 shows the screen shot of the Random Sequence Grabber GUI. The

interface is very simple on purpose, because it is meant to be used by biologists who should

not be bothered with knowing the intricacies of programming.

Figure 3.4: Screen shot of the random sequence grabber program.

Validation of the Random Sequence Grabber tool. We used uniform distribution to gen-

erate the random number. It therefore stands to logic that under uniformly generated random

numbers the proportion of sequences being picked will correspond to the lengths of the chro-

mosomes. That is precisely what is seen here. Table 3.3 shows the correlation between the

proportion of sequences drawn from a chromosome and length of the chromosome with re-
4There are many ways to generate such a template url, most of these are available at

http://www.ncbi.nlm.nih.gov/projects/mapview. Moreover, such urls can be inferred from all places at
NCBI that allow “download sequence” feature.
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Figure 3.5: Number of sequences picked randomly show a distribution that reflects length of
the chromosomes in the human genome.

spect to the sample size n when the sequences are drawn from the human genome. As the

size of sample n drawn increases the proportion of the sequences picked closely resembles the

length of the sequences.

This test establishes that the program to download sequences randomly from the human

genome is downloading sequences proportional to the length of the chromosomes, and that

the sequences picked span the entire genome.

Robustness of the Background Models. As mentioned before, we downloaded 1000

sequences, each of length 10000 bases, from the human genome (NCBI RefSeq build 36

v3) using the Random Sequence Grabber tool mentioned in the previous section. These

sequences were used to build Markov models (using the GenRGenS (64) tool) of various orders

for use as background for the motif detection exercise.

It is desirable that the results of a motif detection exercise do not depend sensitively on

the specific set of background sequences used to build background models. Such sensitivity

of estimated Markov model parameters can be assessed by constructing multiple models

instances for each order using entirely different sets of randomly-picked sequences. To this
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Figure 3.6: Variability of Markov model parameters over multiple background
sequence sets: What is shown is the distribution of the coefficient of variation (CV, Equa-
tion 3.1) in the form of a boxplot, as a function of the model order: (a) CV variability for
Markov models built using 5 independent sets consisting of 1000 sequences length 10000 each,
and (b) CV variability for Markov models built using 50 independent sets consisting of 100
sequences length 10000 each.

The Boxplot is a representation of data in a way such that the overall distribution of the
values in the data can be observed in a single figure. The two staples, one at the top and
the bottom denote the maximum and minimum data values. The lower (upper) border of
the box denotes the 25th (75th) quantile of the data, the thick line in the middle of the box
denotes the median of the data, and data points designated as outliers are shown as small
circles. 104



3.3.2 Data Preparation

Sample size (n) Correlation coefficient (r)
100 0.7907
200 0.8019
300 0.8771
400 0.8948
500 0.9568

Table 3.3: As the sample size increases the proportion of the sequences picked from different
chromosomes starts approaching proportion of the length contributed by each chromosome
under the assumption that that a genome is a single molecule with all the chromosomes joined
end to end.

end, we downloaded 5 independent sets, each with 1000 sequences of length 10000 each. Each

set was used to build Markov models of orders 0 through 6. We then assessed the variability

of the Markov model parameters via the distribution of their coefficients of variation (CV),

defined as the ratio of estimated standard error σ of each model parameter to the estimated

mean µ of each model parameter:

CV =
σ

µ
(3.1)

Figure 3.6 shows boxplots of the CV as a function of model order. These boxplots show very

clearly that the CV values for a very large number of models parameters (an order-k model

is defined by 4k+1 parameters) are rather small. This implies a small variability of only a

few percent of the mean value. We also see a mild increase in the variability of parameter

values with the order of the model, as seen through the variation of the median CV value as

a function of order. Each of the outliers seen in the plot corresponds the CV values for one of

the model parameters; the number of such outliers is clearly quite small (Figure 3.6(a)). This

implies that Markov models built using randomly-picked sequences of sufficient length (10000

bases) and number (1000) are quite stable, and not very sensitive to the specific instance of

sequence data used to build them.

To assess the stability of model parameters built from a smaller-sized sequence set, we

also downloaded 50 independent sets, each with 100 sequences of length 10000. Again, each

of these 50 sets was used to build Markov models of orders 0 through 6. In Figure 3.6(b)

we again depict CV variation for this set of models, as a function of the model order. We

clearly see that order-5 and order-6 Markov model parameters show wide variability. This

is in contradiction with the popular perception that 100 sequences of length 10000 each is a

105



3.3.3 Motif Detection

fairly large set of genomic sequences. This variability of model parameters is traced to the

observation that not all 6- and 7-mers were represented in many of these smaller sets, thus

making it difficult to estimate stable Markov model parameters for order 5 and 6 respectively

(See page 87 for detailed explanation). The important insight gained through this exercise is

twofolds:

1. Background model variability needs to be assessed to ensure stability of motifs detected,

and

2. Building stable Markov models of high orders needs sufficiently large sequence sets.

Clearly, this need will grow exponentially with respect to the intended Markov model

order.

3.3.3 Motif Detection

We used the MEME (63) tool extensively for our motif detection exercises. MEME is a very

highly computation-intensive algorithm. For the present work, the high-performance server

used had two 64-bit dual-core Intel Xeon processors and 12 GB of RAM, with Linux (Fedora

8) as the OS. A local copy of MEME (version 3.5.4) was compiled in serial mode using Intel

compilers (version 10.1). For the HIV integration site data described earlier (See page 99),

MEME run took about 220 hours (about 9 days) to find 5 motifs with each of the 6 background

models (i.e., orders 0 through 5 Markov models constructed from sequences randomly picked

from the human genome, as described earlier (See page 87).

The command line for a typical MEME run had the following structure. Specific command-

line arguments used in this command line are explained below. Further details on the usage

of MEME can be found in (63, 66) (also see the MEME website http://meme.sdsc.edu for more

details).

meme invivo_sequences.txt -dna -mod tcm -nmotifs 5 -nsites 372 -wnsites 0.8 -text -bfile human_random_order3 \

-maxsize 1000000 -revcomp -text -minw 5 -maxw 50 > invivo_motifs_order3_background.txt

Model This is the -mod option in the MEME. It can take 3 values viz., ZOOPS, OOPS, and

tcm. We used the option tcm because we expected zero or one or more repetitions of

the motifs per sequences. The value of ZOOPS only looks for zero or one occurrence of
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3.3.4 Assessment of Biological Relevance

motif per sequence, and the value of OOPS looks for exactly one occurrence of motif

per sequence.

Number of motifs This is the nmotifs option. The value is number of motifs that should

be searched. We searched for 5 motifs over each background.

Background This option is given as -bfile. The value to this option is expected to be a

file with specific structure (n-mer probabilities).

We constructed the background files from randomly picked sequences as mentioned

earlier and used backgrounds of order from 0 through 6 in addition to the default

background of MEME while all other parameters remained the same.

Number of sites -nsites, the value of this option determines number of times a given

motif should occur to qualify as a motif under given parameters. The default value for

this option is 50. We used nsites=Number of sequences.

Data size -maxsize, this argument is an estimate of total data that will be processed by the

MEME. The default value is 100000, however the data used in the current study is of size

372 (number of sequences) ×2000 (length of each sequence) so we changed -maxsize

to 1000000.

Strands -revcomp, arguments considers the input sequence(s) and their reverse comple-

ments separately.

3.3.4 Assessment of Biological Relevance

It is known that retroviruses prefer integration in transcriptionally active regions of chromatin

such as promoters and first introns (67). In the context of the present problem, viz., motifs

in HIV integration sequences, it thus makes imminent sense to look for the occurrences of

detected motifs in promoter sequences. Biological relevance of detected motifs can then be

assessed by the strength of their association with the HIV life cycle.

Our protocol for the assessment of biological relevance of detected motifs as function of

the background model order is summarized below; detailed discussion of each step follows.

1. Using a profile match using a home-brewn tool (described below in detail), we located

all occurrences of all the detected motifs in the human promoters in the Genomatix
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3.3.4 Assessment of Biological Relevance

Promoter Database (GPD; discussed in detail below). We thus obtain, for each order of

the background model, a set of genes whose promoters contain one or more instances

of the corresponding motifs.

2. We performed a GO-term enrichment analysis in an hierarchical and incremental fashion

over these orderwise sets of genes thus obtained. The biological relevance of motifs

corresponding to a Markov model order can then be assessed from the enriched GO-

terms and their putative role in the HIV life cycle.

Why GPD?

The Genomatix Promoter Database (GPD) is a high-quality commercial promoter sequence

database, available at http://www.genomatix.de. Unlike, e.g., the Eukaryotic Promoter

Database (EPD), the GPD is a more complete and better-curated database with about 25000

promoters, together with relevant information such as gene IDs, gene symbols, alternative

names, etc., which made the further analysis much easier and manageable.

Motif Profile Match Method

Given the motif model for a motif of length L, our profile match method is as follows:

1. We first calculate, under the motif model, the probability of the motif itself: this is de-

fined as the maximum possible probability pmax under the motif model for any sequence

of length L. Given the structure of the motif models (as explained in Section 3.1), pmax

is simply a product of the sitewise maximum probabilities.

2. Next, we scan all sequences in the given sequence data (i.e., GPD). For each sequence S,

we compute the probability p(s) of every length-L subsequence s of the sequence, under

the motif model. All such subsequences with p(s)/pmax ≥ 0.9 qualify as occurrences of

the given motif, and we extract gene information corresponding to sequence S.

We performed this exercise for all the detected motifs for each background model order, and

obtained sets of genes labeled by the background model order.
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3.3.4 Assessment of Biological Relevance

GO-Term Enrichment Analysis

The GO Project. The GO (Gene Ontology) project (61) has developed three structured

controlled vocabularies (ontologies) that describe gene products in terms of their associated

biological processes, cellular components and molecular functions in a species-independent

manner. The advent of high-throughput methodologies (microarray, ChIP-chip, etc.) as ne-

cessitated the development of ability explain co-expression patterns of number of genes (68).

In microarray experiments the genes are grouped according to their expression patterns and

then the associated GO-terms are analyzed for enrichment. There is copious amount of litera-

ture is available today on usage, importance and analysis of the GO terms (69, and references

therein). A complete discussion of the structure of the GO project is beyond the scope of this

thesis; we refer the interested reader the GO project website http://gene-ontology.org/

for further details.

The GO database is most commonly used for detecting significant over-representation of

GO-terms associated with a set of genes of interest, with respect to a global set of genes that

contains the genes of interest. For example, in an expression microarray study involving mul-

tiple time points, a set of genes with similar expression profile over the period of experiment

could be the set of genes of interest, as against the complete set of genes represented on the

microarray. Functional annotations of the genes of interest are derived by analyzing which of

the GO-terms associated with these genes got enriched with respect to the global set of genes.

Qualitatively, a specific GO term is considered enriched if the proportion of associated

genes in the set of interest happens to be significantly larger than that in the global set.

Quantitatively, this is achieved using statistical tests based on the hypergeometric distri-

bution, and the significance of enrichment is assessed using the corresponding p-value (70)

possibly with Bonferroni correction for multiple testing (71, 8). A variety of tools for such

GO-term enrichment analysis are available in the public domain; e.g., AmiGO from the GO Con-

sortium (72), the packages GOstats and HyperGOstats under the R statistical computing

environment (73), etc.

GO-Term Enrichment Analysis of Detected Motifs. Our assessment of the biological

relevance of the motifs discovered in the HIV integration sequence data is based on the
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3.3.4 Assessment of Biological Relevance

following biologically reasonable idea: We consider a discovered motif highly relevant if it

occurs in the promoter regions of genes that are intimately associated with HIV-life-cycle-

related processes in the host. For a motif with high biological relevance to the HIV integration

problem, we expect to see an enrichment of GO-terms associated with such processes as

immune response, cytokine secretion, etc. Specifically, we wish to assess how the order of

the background model affects the biological relevance of detected motifs. This we do using

GO-term enrichment analysis as follows:

For each motif pertaining to given background model order, we obtain list of associ-

ated genes using the profile match method explained earlier (page 109). Let Gk be the

collective (i.e., across all motifs) list of all genes associated with background model orders

k = 0, 1, . . . , n, where n stands for the maximal order of the background model used for motif

detection. Let

G =
n⋃

i=0

Gk

C =
n⋂

i=0

Gk (3.2)

be, respectively, the union and intersection of gene sets Gk, k = 0, 1, . . . , n. The set G forms

the global set for our GO-term enrichment analysis. The set C is the set of genes common

across all orders, hence not relevant to analyzing the effect of the background model order

on the biological relevance of motifs detected.

To extract the specific effect of the background model order, we we now form a ordered

hierarchy of gene sets in two ways:

1. Incremental Gene Set at Order k: Define

g0 = G0 − C

g1 = G1 − g0
...

gn = Gn − gn−1. (3.3)

Here, the operator ‘−’ stands for the operation of set difference: For example, g0 is the
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3.3.4 Assessment of Biological Relevance

set of all genes associated with order 0 that are not present in the set C of genes common

across all orders, g1 is the set of all genes associated with order 1 that are not present

in the set g0, and so on and so forth. Thus, the set g0 is the set of genes that make

their first appearance through motifs found at order 0. Clearly, some of these genes

may show up at higher orders, but we consider these genes as being uniquely associated

with order 0 because they show up, for the first time, with order 0 background model.

This construction is motivated by the observation that (a) the same motif may get

detected at multiple background orders, and (b) there is no unique way of deciding

whether two motifs, as characterized by their respective PSPMs, are identical. The

above construction circumvents the problem of arriving at a unique set of motifs either

within the set of motifs discovered over one specific background model order, or across

multiple orders.

2. Set of Unique Genes at Order k: The set of genes uniquely associated with motifs

discovered using order-k background model can be constructed as follows:

γk = Gk −
n⋃

i=0 (i 6=k)

Gi (3.4)

This construction is motivated by the need to assess effects specific to the given order.

These two constructions are illustrated schematically in Figure 3.7 for n = 2, using the

Edwards representation of a Venn diagram (74). Figure 3.7(a) shows three sets, the black

circle representing G0, the black rectangle representing G1, and the red rectangle representing

G2. Our global set G corresponds to the region enclosed by the three sets together. Our

incremental sets gk are marked in Figure 3.7(b) with different colors: The black pie in

corresponds to the common set C, the red area corresponds to g0, the blue area corresponds

to g1, and the green area corresponds to g2. Our unique sets γk are marked in Figure 3.7(c)

as follows: the red area corresponds to γ0, the blue area corresponds to γ1, and the green

area corresponds to γ2.

The actual lists of the gene IDs can be found in Appendix C. Finally, we perform a GO-

term enrichment analysis for each of the order-specific sets γk and gk, k = 1, . . . , n, against

the global set G. The biological relevance of the motifs detected using a background model
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3.4. RESULTS AND DISCUSSION

(a) (b)

(c)

Figure 3.7: (a) Description of gene sets in
the illustration; (b) Incremental construc-
tion of order-wise gene sets for GO-term
enrichment analysis; (c) Unique construc-
tion of order-wise gene sets for GO-term
enrichment analysis; see text for details
(See page 109).

order is qualitatively assessed by the relevance of the enriched GO-terms to the HIV life cycle

and related processes in the host.

3.4 Results and Discussion

3.4.1 Motif Detection

Motifs detected in the HIV integration sequence data by MEME, over a variety of background

models (see Table 3.2 for details), are shown in Table 3.4. Specifically, each motif is rep-

resented here as the sequence of its highest probability letters at each position. The most

detailed description of a motif is its PSPM (see page 85); the PSPMs of all these motifs

can be found in appendix A. Column 3 lists − loge(E-value) for each of the detected mo-

tifs, which is a measure of the quality of the motif detected. Lower the E-value (higher the

− loge(E-value)), better the probability that the detected motif is genuine and statistically

significant. Column 4 lists the background model used for motif detection.
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3.4.1 Motif Detection

Motif − loge(E-Value) Background

1 CCTCAGCCTCCC 1024
2 AGCTGGGATTACAGGC 1122
3 CTCCAGCCTGGG 520 MD-0
4 AAACCCCGTCTCTACTAAAAA 1823
5 CCCCTCCCC 112

6 AGGCTGAGGCAGGAGG 1085
7 CGCCTGTACTCCCAGC 957
8 CCAGCCTGGGCC 562 RP-0
9 CCCCCCAGCCCC 168

10 GCCACCACGCCCGGCC 515

11 CCTGTAATCCCAGCTACTCGGG 874
12 GGCCGGGCGCGGTGGCTCACGC 732
13 GCCCGGGGGGCAGGGG 068 RP-1
14 GGTTTCACCATGTTGGCCAGGCTGGTCT 1418
15 CCCAAAGTGCTGGGATTACA 1152

16 AGCCGGGCGTGGTGGC 445
17 GCCTCGGCCTCC 393
18 CAGTGAGCCGAGATCGCGCCACTGCAC 1170 RP-2
19 CCTGTAATCCCAGC 755
20 TTCTCCTGCCTCAGCCTCCCG 883

21 GCCTCGGCCTCC 381
22 CAGCCTCCCAAGTAGCTGGGATT 1123
23 GCCGGGCGTGGTGGCTCACGCC 1201 RP-3
24 GGCTGGAGTGCAGTGG 493
25 TGCAGTGAGCCGAGA 217

26 TAATCCCAGCACTTTGGGAGG 2310
27 AGCCTGGGCAACATA 976
28 GGCGTGAGCCACCACGCCCGGC 1979 RP-4
29 AGTGATCCTCCTGCCTCAG 1533
30 GAGGTTGCAGTGAGCC 280

31 GGGGCGGGAGGGGCGGGGGCGG 034
32 CCCAAATTGCTGGGATTACAG 2294
33 TGGGCAACATAGTGA 777 RP-5
34 AGTGATCCTCCTGCCTCAGCCT 2137
35 GGCTGGAGTGCAGTGG 1166

Table 3.4: List of motifs detected over various backgrounds Motifs detected by MEME
over various backgrounds. Column 2: motif, column 3: − loge(E-value) (lower the E-value
(higher the − loge(E-value) value), better the quality of the motif), column 4: background
model (see Table 3.2 for explanation).
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Figure 3.8: Default Background and Markov order-0 Background. The p-values for the
enriched GO-terms are plotted with ascending p-values. The enrichments were carried out for
genes that contain motifs as detected over MD-0 and RP-0.

3.4.2 Assessment of Biological Relevance

As discussed in Section 3.3.4, we performed GO-term enrichment analysis over sets of genes

associated with the motifs detected. There results are presented in Figure 3.8 through Fig-

ure 3.10. In these figures the GO-terms related to immune-response are highlighted. Resulting

GO-terms (as returned by AmiGO) were filtered using a cutoff of 0.01 on the (hypergeometric)

p-value; i.e., only those terms with p ≤ 0.01 were considered for further analysis. We used

the set G (Equation 3.2) as the global set for all our enrichment analyses. Complete listing

of our enrichment analysis results is available in Appendix C.

Comparison of RP-0 vs. MD-0 Motifs

As the first step of our GO-term analysis, we compared the biological relevance of motifs

detected using the MD-0 and RP-0 backgrounds (Table 3.2). The comparison is motivated

by the fact that MD-0 is the MEME default order-0 background model constructed from the

HIV integration sequences themselves, and it would be interesting to see if two different

background models of the same but low order lead to differing results. This point has been

discussed in Section 3.4.3 in greater detail.

Results of this comparison are presented in Figure 3.8.
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Figure 3.9: In this figure each GO-term enrichment was performed using the sets as mentioned
in text (page 110) and Equation 3.3. These enrichments are for the incremental gene lists g0
through g4 described earlier.
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Figure 3.10: In this figure each GO-term enrichment was performed using the sets as mentioned
in text (page 111) and Equation 3.4. These enrichments are for unique gene-lists γ0 through
γ4 described earlier.
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Effect of Incremental Gene lists on GO Term Enrichment

In Figure 3.9 we present results for GO-term enrichment for all the backgrounds (RP-0 through

RP-5) for increasing orders. These are the results for sets g0 through g4 as discussed earlier

(Section 3.3.4, equation 3.3). It should be noted here that in this incremental strategy the

set g5 contained only 5 genes and no GO-term enrichment could be done. As described earlier

and illustrated in Figure 3.7 the hierarchical and incremental gene-sets were used for GO-term

enrichment. All the GO-terms that are potentially related to the HIV lifecycle or the immune

response are colored red. It can be clearly seen that as the order of the Markov background

increases the motif finds a place in genes that are more related to the immune response. This

is expected given the known information about the HIV and copious amounts of literature

available (75, 76) also (77, and references therein).

Effect of Unique Gene lists on GO Term Enrichment

In Figure 3.10 we present the data for all the sets γ0 through γ4 (see equation 3.4). It can

be seen that some more terms are enriched in these gene-sets, over and above those that are

illustrated in Figure 3.9, e.g. NK T cell proliferation. Thus we can see that as we refine

our set of genes under study as a function of the motifs, which in turn are detected over

increasing order of the Markov model (background) generated from appropriate sequences

the relevance of the genes picked up by the motif to HIV biology increases. This particular

observation aptly underlines the need for use of appropriate background for motif detection

exercises.

From the number of publications on HIV biology and pathology it is known that HIV

perturbs the immune system. So we expected that the GO-Term enrichment should show

enrichment of immune-related terms such that immune response, mucosal immunity, T-cell

development etc. Most interestingly it was seen that as the order of background increased,

the motifs detected were found to be occurring with increased frequency in the promoters of

genes directly related to immune response.

Thus we can say that the background used for motif detection can directly influence the

biological interpretation of such an exercise. Use of appropriate background can lead to

observations with interesting insights to the problem.
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3.4.3 Discussion

3.4.3 Discussion

From the results presented in the Figures 3.8 through 3.10, it can be seen that the enriched GO-

terms change depending on the genes under study. In effect the GO-term enrichment changes

according to the background model used for motif detection. This change is apparent even

when order-0 Markov models (MD-0 and RP-0) are used as background models. It can be

seen that the enriched GO-terms are not identical. Moreover, in the current analysis the G

was used super-set. We also repeated these analyses using all the genes as found in the

GPD. The results did not change significantly. The explanation for the change in GO-term

enrichment could be as follows. In the incremental gene-set gk (see page 109) we are actually

looking at genes that may also contain motifs detected over other higher order backgrounds.

This will lead to some noise in the enriched terms. However when we use non-incremental

unique gene-lists γk (see page 109) we have only those genes that specifically have only those

motifs as detected over a specific order of background k. These gene-lists are usually smaller

than respective incremental gene-lists. Thus, the enrichment of more specific GO-terms could

be a result of having a very small number of genes of interest being considered for GO-term

enrichment. For the same reason we could not have many genes for analysis that had motifs

detected over RP-5 (see Table 3.2 for explanation).

Limitations The results presented in this chapter clearly bring out and underline the

importance of choosing appropriate/proper background for motif detection exercises. We

would also like to state that these motifs were not checked for their stability or robustness

by obtaining the motifs under given condition large (100 times or more) number of times,

as described by Thijs et al. (13). Such an exercise with the methodology used in the study

i.e. the MEME will require an enormous computation power and a very large amount of time.

Similarly we have not seen the effect of higher (higher than Order k=5) order background

model constructed from the input data on motif detection. Though it has been reported

in earlier studies on prokaryotic genomes, that the performance and efficiency of the motif-

finding algorithm decreases drastically when order-3 Markov models constructed from the

input sequences (13) are used as background model, it needs to be confirmed that the same

is true with eukaryotic genomes. We would also like to note in the passing that to critically
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assess the role of background on motif detection a few more experiments should be done

with following combinations, viz., a) Motif detection on randomly picked genomic sequences

using various orders of background models, b) Motif detection in HIV integration sites using

various orders of background models built from the same (input sequence) sequences. We

believe that such a study will establish, underline and bring out the importance of the work

presented in this chapter.

Furthermore, we would also like to add that the GO-term analysis is indicative of the

biological relevance of the motifs. The results can be further qualified and confirmed using

the data available e.g., in the GEO database. It should be possible to analyze the microarray

data as obtained from HIV infected cells/patients and do a similar GO-term enrichment study

to see how many GO-Terms actually overlap with study presented in this chapter.

3.5 Conclusion

Form all the data presented in this chapter we would like to draw attention to following

points,

1. In a motif detection exercise, background should be chosen according to the question

being addressed.

2. The choice of the background affects the biological relevance of the results in a motif

detection exercise.
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Chapter 4

Deciphering Gene Regulatory
Networks

4.1 Introduction

The problem of deciphering tissue-specificity signature(s) in a promoter sequence is of consid-

erable interest from many perspectives. For instance, based on diverse evidence, it is believed

that primary signatures of tissue-specificity are hidden in the promoter sequence itself and

are responsible for regulating gene expression in a tissue-specific manner. From a systems bi-

ology perspective, knowledge of tissue-specificity signatures in promoter sequences could help

in inferring gene regulatory networks that control tissue-specific gene expression. Mutations

in promoters as a cause of carcinogenesis, for example, highlight the “applied” perspective

on signatures of tissue-specificity hidden in a promoter sequence such that it would help in

designing an appropriate strategy for gene therapy like approaches to treat cancer.

In this chapter we propose basic premise and methodology to identify characteristic pri-

mary sequence features of human promoter sequences that give the corresponding gene a

tissue-specific expression profile. In particular, this chapter proposes to focus on promot-

ers of genes that are transcribed by RNA polymerase II. Various computational approaches

based on classification and clustering methodologies may be employed to address this prob-

lem. These approaches are described in this chapter.

The methodologies proposed to be developed to predict tissue-specific expression of gene(s)

will help plan better experiments by reducing the amount of trial-and-error. This is of great

practical value given the escalating costs of molecular biology research today. Furthermore,

the ability to predict pattern of expression of gene based solely on the primary sequence pat-
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terns will also help in designing useful vectors for the still-under-development gene therapy.

4.2 Genesis of the Problem

Promoters are short segments of genomic DNA located immediately adjacent to the transcrip-

tional start sites (TSS) of genes. They are recognized by both general and sequence-specific

transcription factors during transcription initiation, and serve to integrate signals from mul-

tiple cellular pathways to promote stringently regulated and specific expression of gene(s).

A large complex protein structure referred to as the pre-initiation complex is assembled on

all active promoters. Presence of the pre-initiation complex is a hallmark of promoters and

this feature distinguishes them from bulk of genome. Many promoters have been identified

based on in vitro and in vivo experiments using cell line and/or animal models. Knowledge of

promoter sequences is essential for understanding the mechanisms of gene regulation during

development and differentiation. A typical eukaryotic promoter consists of a complex array

of cis-regulatory elements (sequence motifs) (1, and references therein), such as TATA box,

Initiator (INR), TFIIB Recognition Element (BRE), downstream promoter element (DPE),

downstream core element (DCE), motif 10 element (MTE), etc. Additionally, there are other

signals superimposed in the promoter (the upstream cis-regulatory regions) regions of the

genes such as the nucleosome positioning (2).

Computational analysis of genomic sequences has traditionally focused on computational

identification of promoters. However, not much work has been done with respect to predicting

tissue- specificity of known and predicted promoters. In this chapter methodologies to address

this particular problem using a systems biology approach are discussed.

4.2.1 Rationale of the Study

The problem of deciphering tissue-specificity of gene expression is of considerable interest from

multiple perspectives. From a fundamental science perspective, tissue-specific gene expression

is believed to be controlled by transcription factors (3). Further analysis of gene expression

from integrated promoter and transgenic mice studies suggests that the promoter alone is

enough to drive transcription in a tissue-specific manner. This suggests that signatures of

the tissue-specificity could be hidden in the promoter sequence itself.
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These primary sequence features could regulate tissue-specific gene expression in three

possible ways: via organizing the gene into a unique chromatin context, or by providing

sites for binding of a set of transcription factors, or both. Chromatin is a complex of DNA

and interacting proteins (including the structural proteins such as the histones) and various

transcription factors. Often it is observed that the specificity of expression is derived from

the combinatorial effect of multitude of factors, and hence analyzing such global networks of

factors seems to be the next challenge in the field of regulation of gene expression.

From a systems biology perspective, such signatures could help in inferring gene regulatory

networks that control tissue-specific gene expression. Such attempts have been made in single-

cell eukaryotes such as the yeast Saccharomyces cereviseae but not for higher eukaryotes.

These attempts have also revealed putative novel interactions and relationships which could

be subsequently tested in the lab and verified. Further, even a probabilistic assignment of a

promoter sequence to a particular tissue will greatly help plan better experiments by reducing

the trial-and-error in determining expression patterns of the corresponding gene(s).

From a purely applied perspective, many studies such as described in Harada et al. (4).

Harada et al. have demonstrated that carcinogenesis is positively linked with mutations in

promoters of known tissue-specific genes (4). Furthermore, tissue-specificity of a promoter

has also been utilized to construct gene therapy vectors for treatment of cancer. Another

highly applied perspective is offered by J. Adjaye, which we simply quote here (5):

The elucidation, unraveling and understanding of the molecular basis of transcriptional con-

trol during preimplantation development is of utmost importance if we are to intervene and

eliminate or reduce abnormalities associated with growth, disease and infertility...

In this chapter methodologies to identify characteristic primary sequence features of hu-

man promoter sequences that give the corresponding gene(s) a tissue-specific expression pro-

file are discussed. The gene expression in higher organisms that have multiple terminally

differentiated tissues involves an added level of regulation. The mechanisms that control the

tissue-specific expression of genes are largely unknown. In this chapter methodologies to this

end are described.
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4.2.2 Hypothesis

Usually in the literature available today a promoter is considered to be tissue-specific if the

expression profile of the corresponding gene is tissue-specific. In accordance with GeneCards

(6) and GeneNote (7), for the purpose of this chapter we define tissue-specific expression as

follows: a gene is considered tissue-specific if, in the analyzed microarray data, it is at least

two-fold over-expressed in given tissue and is either not detectable or normally expressed

in all other tissues. In particular, this chapter will focus on promoters of genes that are

transcribed by PolII (DNA dependent RNA polymerase II). Such promoters are usually

positioned somewhere around -300 to -50 bp upstream of the Transcription Start Site (TSS).

However, for our analysis we may also consider regions up to 1000 bp upstream of the TSS, so

as to cover and account for a remote possibility that the core promoter is situated upstream

of the generally expected position.

It is further hypothesized that the chromatin context of each promoter is unique and may

be responsible for driving the expression profile of the gene controlled by it. It is further

hypothesized that the information for such unique higher order chromatin structure may be

hidden within the primary sequence of the promoter itself. Thus it may be possible to uncover

these hidden signatures using purely computational means guided by biological insight.

These signatures, in conjunction with tissue-specific transcription factors or their com-

binations may dictate tissue-specific gene expression. Thus, a systems biology approach is

required to understand this complex interplay and the networks between various cis and

trans-acting elements. The human genome is composed of a very small fraction of protein

coding sequence (upto 2%) while the remainder bulk consists of non-protein coding sequence.

Within the 2% of protein coding sequence, a very tiny fraction corresponds to the promoter el-

ements. Thus, promoter sequence could be considered as highly specialized DNA sequences,

and therefore we expect that they could be classified according to their tissue-specificity.

Once such classifiers/predictors are constructed and refined, then we could use them to pre-

dict functional attributes of any given promoter sequence.
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4.3 Background

Methodologies to determine whether a given DNA sequence may contain a promoter or is

itself likely to be a promoter are readily available. Multiple studies have attempted to classify

promoter sequences based on experimental data (8). A study by Frech, Quandt and Werner

(9) investigated tissue-specificity signatures in muscle actin promoters across many species.

Recent studies also demonstrate definitively that the cis-regulatory elements indeed control

the tissue-specific expression of genes (10). A novel approach by Schug et al. (11) illustrates

that Shannon entropy measure on microarray data can be used to rank genes according to

their tissue-specificity.

Many recent studies have been geared towards finding features of promoter sequences

that may be associated with tissue-specificity of gene expression. For example, Fitzgerald et

al. (12) have demonstrated clustering of specific oligomers close to the Transcription Start

Site (TSS) in human promoters. Smith et al. (13) have demonstrated that the proximal

promoter and cis-acting elements that control tissue-specific transcription in the mouse and

the human. Zhang et al. (14) have demonstrated that clustering of degenerate transcription

factor binding site motifs on a promoter is a general feature of mammalian genome. Xie et al.

(15, 16) have created a catalog of regulatory motifs in human promoters. They have also used

known functional cis-regulatory modules (CRM)s in the proximal promoters to predict tissue-

specific gene expression. Their results indicate that information in the proximal promoter

can be used to predict differential expression of downstream target transcripts in terminally

differentiated human and mouse tissues with significant accuracy. Schug et al. (11) have

illustrated the role of CpG islands , the TATA box, YY1 and SP1 recognition sites on a

promoter and the expression of corresponding gene(s). Tools such as TRANSFAC (17, 18) and

MATCHTM predict the presence of transcription factor recognition sites on a given sequence

(for review see (19) and (20)).

4.3.1 Relevance and Expected Output

There are several grey areas in the current state-of-the-art methodologies and tools for pro-

moter classification according to tissue-specificity. For example Smith et al. (13) have shown

that it is indeed possible to construct tissue-wise predictors, however their efficacy and effi-
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ciency are questionable, especially in the light of possible input of housekeeping genes. The

housekeeping genes are defined as follows:

housekeeping genes Genes that are always expressed (i.e. they are said to be constitutively

expressed) due to their constant requirement by the cell.

Furthermore, most of the studies on the subject of tissue-specific promoter classification

are actually concerned with finding motifs, transcription factor binding sites etc. Although

this is of considerable biological relevance and value, the evaluation of existing classification

and clustering methodologies for the purpose of tissue-wise promoter classification, and per-

haps development of new biologically-motivated ones, is still an emerging and open area of

research.

4.4 Exploratory Data Analysis

The exploratory data analysis was carried out in 3 ways, viz., analysis of oligomer frequencies,

analysis of the transcription factor networks, and study of gene networks.

4.4.1 Studies Using Distance Measures

We used promoters of the known tissue-specifically expressed genes in this study. Briefly, a

normalized compression distance was defined (see Appendix B for details of formulation of

compression based distance measures and their use in classification and clustering of DNA

sequences). For the purpose of this study we used the sequence data as described in Smith

et al. (13). These sequences are essentially regions around the transcription start site, from

-1000 to +100 with respect to the TSS. In the supplementary data of the said paper, these

sequences are available in the FASTA format and classified according to the tissue. We used

these sequences as inputs for the compression distance calculating algorithm. We generated a

distance matrix of all promoters using the compression based distances. Briefly, we obtained

promoter sequences from the TCAT database as mentioned in Smith et al. (13). These pro-

moters are classified as specific to a tissue based on microarray analysis and other statistical

parameters as described earlier by Smith et al. (13). As described and defined in Appendix B,

we used the symmetrized normalized compression distanceas a metric of choice to distinguish
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between the promoters of genes that expressed in tissue-specific manner. On such obtained

distance matrices we used the various hierarchical clustering techniques. However, these tech-

niques failed to distinguish the promoter sequence of tissue-specifically expressed genes from

each other. To the best of our knowledge use of compression distance to distinguish promot-

ers that drive tissue-specific expression of genes has not been attempted. There have been

attempts of using mutual information, Shannon’s Entropy and other information complexity

measures to classify DNA sequences. However, such methodologies have failed to address

the problem adequately. Other compression based distance measures were used, and found

not to be adequate to distinguish promoters of tissue-specifically expressed genes (based on

tissues).

In addition to the compression based distance measure, we also tried using the Levenshtein

Distance as a metric to distinguish the promoters of tissue-specifically expressed genes from

one other. In information theory and computer science, the Levenshtein distance is a metric

for measuring the amount of difference between two sequences. It is also known as the

Edit distance. There are following bounds on the Levenshtein distance (as obtained from

Wikipedia1) viz.,

• It is always at least the difference of the sizes of the two strings

• It is at most the length of the longer string

• It is zero if and only if the strings are identical

• If the strings are of same size, the Hamming Distance is an upper bound on the Lev-

enshtein Distance.

This metric also failed to distinguish between promoters of the various tissue-specifically

expressed genes. The reason(s) why compression based distance measures were able to clas-

sify artificial and natural DNA sequences is not entirely clear. This measure has been used

successfully in authorship attribution. The probable reason for the effectiveness of the com-

pression based distance measure(s) is in basis of information theory and computer science.

The compression algorithms were able to ‘sense’ the information in the genomic DNA se-

quences, whereas in the artificial sequences such information was absent. However, it cannot
1http://www.wikipedia.org
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be stated in any definite manner ‘what’ this information is. In the same line it is possible that

the compression algorithms are not able to decipher the tissue-specific expression information

from the promoter sequences.

4.4.2 Oligomer Frequency Analysis

Initially we obtained list of tissue-specifically expressed genes from GeneNote and GeneCard

databases. The lists were basically available as gene-symbol(s) (Gene symbols are the officially

designated short representations of the gene-names as standardized by the HUGO, these

symbols are used in most of the standard databases that store the gene information). Using

these gene symbols and the CCDS database (Comprehensive cDNA Database), the exact

genomic locations of the genes were obtained. Sometimes there are multiple entries for each

gene, so the first entry was used to obtain information, other entries were ignored. Similarly,

for many genes multiple transcription start sites have been documented. For the purposes

of these studies, the first reported transcription start site was used. All the information

that was ignored during the study may be biologically relevant, but no reasonable estimate

can be made about such ignored information for the lack of literature. Furthermore, detailed

analyses have to be carried out to obtain a complete or near-complete picture of the upstream

regulatory regions of the genes.

Using the obtained genomic locations, we downloaded the upstream regulatory regions.

In house scripts and well documented NCBI APIs were used to obtain such sequences. We

defined, for the purposes of these studies, the upstream regulatory region to be from -2000 to

-1 with respect to the transcription start site. The rationale being, core promoter will surely

be represented in these regions along with most important proximal cis-regulatory region(s).

The sequences were obtained in FASTA format. As the sequences were downloaded from the

NCBI RefSeq database, the downloaded sequences did not have the information regarding

the gene the sequences were related to. To simplify further analyses, we added the Gene

Accession Number2 to the description line of each FASTA sequence downloaded.

These sequences were then analyzed for their DNA oligomer frequency counts. Briefly,
2Gene Accession Number is a unique alpha-numeric identifier of each entry in the gene database. There are

specific conventions followed in these nomenclatures and the complete list of these conventions can be found
the help documents at the NCBI.
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for each sequence, all possible occurrences for all possible tetramers were generated. The

count of each possible tetramer for each sequence was then divided by number of possible

tetramers in the given sequence, and a normalized tetramer frequency was generated. The

normalized tetramer counts were generated as follows.,

Nc =
Coligomer

N − l + 1
(4.1)

Nc is the normalized count of the the oligomer, N is the length of the sequence, l is the

length of the oligomer, and Coligomer is the count of the given oligomer in the given sequence.

This particular measure will generate counts of oligomers (tetramers in this case) such

that the numbers will be comparable even if the length of sequences under study vary. These

normalized frequencies are plotted here. In Figures 4.1 through 4.4 the normalized frequencies

of the tetramers are plotted. In all the graphs the tetramer index on the X-axis is from AAAA

to TTTT (0 to 255, total 256). It can be seen clearly that the frequencies of the the tetramers

show nearly identical patterns across the different tissues. We believe this is because of

the nature of sequences from which these frequencies were generated. As discussed earlier

these graphs were generated from the promoter sequences. That could be the reason for have

similar pattern of tetramer frequencies in the sequences. However, when normalized tetramer

counts for two or more tissues are plotted together, certain differences become apparent.
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Figure 4.1: Brain–normalized tetramer frequencies for promoters obtained from the TCAT
database (13) are plotted on the Y-axis and the tetramer-index on the X-axis.

Figure 4.2: Heard–normalized tetramer frequencies for promoters obtained from the TCAT
database (13) are plotted on the Y-axis and the tetramer-index on the X-axis.
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Figure 4.3: Liver–normalized tetramer frequencies for promoters obtained from the TCAT
database (13) are plotted on the Y-axis and the tetramer-index on the X-axis.

Figure 4.4: Prostate–normalized tetramer frequencies for promoters obtained from the TCAT
database (13) are plotted on the Y-axis and the tetramer-index on the X-axis.
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Figure 4.5: Normalized frequencies show distributions unique to the tissue-types. Tissues
with dissimilar developmental lineage have widely varying distribution of normalized tetramer
frequencies

Figure 4.6: Tissues with similar developmental lineage show similar normalized frequency.
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Figure 4.7: Relative tetramer frequencies in bone and spleen. The relative tetramer frequencies (tetramer frequencies normalized by
frequency of the maximum occurring tetramer) plotted with error-bars for each tetramer. At least for few tetramers the difference in the
relative frequency is statistically significant.138
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Moreover, when such frequencies are plotted for similar tissues, e.g. tissues with similar

developmental lineage, such as liver and pancreas, majority of these differences disappear as

seen clearly in Figure 4.6. It however remains to be seen if these differences are systematic.

However, even if these differences are not statistically significant at the level of normalized

tetramers, they may become statistically significant when such oligomer frequencies are stud-

ied and analyzed for oligomers larger than 4-mers.

In addition we normalized frequencies we also looked at the Relative tetramer frequen-

cies. These are frequencies normalized with frequency of the maximum occurring tetramer.

However, when the relative frequencies are plotted with error bars (standard error about

the mean as calculated for each oligomer for all the sequences assigned to a single tissue),

the differences for frequencies of at least a few tetramers show up as statistically significant.

The difference is especially stark when compared across tissues which are functionally and

physiologically very distinct e.g. bone and spleen (Figure 4.7).

We therefore conclude that the information about the regulation of gene expression is

in the promoter sequences. Moreover, the information about the function of a given DNA

sequence e.g. as a promoter, is also in the primary sequence. Simple analysis of these

sequences, in terms of their composition can be a good indication of this phenomenon. We

believe that there is a lot of potential for various emerging and established statistical theories

for such problems. As this problem ultimately boils down to analyzing ‘strings’ of DNA, many

techniques from the Language theory can be applied here. These approaches are indeed being

considered and have shown some encouraging results (21).

4.4.3 Transcription Factor Co-occurrence Network

As part of exploratory data analysis, and to derive proof-of-concept we obtained sequence

data by integrating information from various sources. We processed this data in tissue-wise

manner, through MATCHTMavailable on the web, to identify transcription factor binding sites

on each of the promoter sequences in this data. Using a combination of settings for this

tool, we restricted this search to high-quality weight matrices for transcription factors from

vertebrates only, and the score cutoffs were chosen to minimize false positives as well as false

negatives.
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The output from the MATCHTM(22) were parsed and this information was used to compute

a heuristic distance for each pair of transcription factors (TF). In essence, this distance

measure counts the co-occurrences of a pair of TFs on the same promoter sequence, averaged

across all promoters belonging to the same tissue. Next these distances were used to construct

tissue-wise TF networks. The link weight (weights of the nodes in this network are the

frequencies of occurrence of individual TFs averaged across all promoters belonging to the

same tissue) is number of times the given pair of TFs occurs in a given tissue. Finally, the

connection-graphs were visualized as TF-networks using a software tool called the graphviz3

using a color code4 that is uniquely determined by the node and link weights.

3Graphviz (short for Graph Visualization Software) is a package of open source tools initiated by AT&T
Research Labs for drawing graphs specified in DOT language scripts. It also provides libraries for soft-
ware applications to use the tools. Graphviz is free software licensed under the Common Public License
(http://www.graphviz.org).

4The RGB color space is represented in hexadecimal format, such that #000000 means black and #ffffff

means white. Each pair of position gives the amount of R (red) or G (green) or B (blue) color present. So
#ff0000 becomes a red color and so on. Additionally each hexadecimal number can also have a binary/decimal
representation. Such a color space was divided across the frequency spectrum obtained for the co-occurrence,
and the color was assigned such that frequencies of co-occurrence were scaled and represented as hexadecimal
numbers that were in turn mapped to the RGB colorspace. Maximum frequency received the red color and the
minimum frequency received the blue color.
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Figure 4.8: CD4+-T cell transcription factor co-occurrence network. The MATCHTM output for the sequences obtained from the TCAT database
visualized as transcription-factor co-occurrence network with color coding as mentioned on page 140, footnote 4.
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Figure 4.9: heart transcription factor co-occurrence network. The MATCHTM output for the sequences obtained from the TCAT database
visualized as transcription-factor co-occurrence network with color coding as mentioned on page 140, footnote 4.

142



4
.4

.3
T

ra
n

scrip
tio

n
F

a
ctor

C
o

-o
ccu

rren
ce

N
etw

ork

Figure 4.10: liver transcription factor co-occurrence network. The MATCHTM output for the sequences obtained from the TCAT database
visualized as transcription-factor co-occurrence network with color coding as mentioned on page 140, footnote 4.
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Figure 4.11: muscle transcription factor co-occurrence network The MATCHTM output for the sequences obtained from the TCAT database
visualized as transcription-factor co-occurrence network with color coding as mentioned on page 140, footnote 4.
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Figure 4.12: pancreas transcription factor co-occurrence network The MATCHTM output for the sequences obtained from the TCAT database
visualized as transcription-factor co-occurrence network with color coding as mentioned on page 140, footnote 4.
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4.4.4 Gene Networks

In Figures 4.8 through 4.12, it can be seen that the frequencies of co-occurrence of the

known transcription factor binding sites in the upstream regions of the genes differ quite

significantly across the tissues. Interestingly, though we see binding sites for nearly same

transcription factors across all the promoters, that cannot be said to be true for the ‘pairs’ of

transcription factor binding sites occurring together. In the above figures (4.8 through 4.12),

each node represents a TFBS. Each link connecting two nodes means those to TFBSs occur

together. The color of the node ranges from black to red. The closer the color of the node

to red, more the occurrences of the TFBS in the given data set. Similarly closer the color

of the link joining two nodes to red, higher the probability of their occurrence in the given

data-set (for explanation of how the colors are derived see footnote 4 on page 140).

We therefore conclude that there is some information regarding the regulation of gene ex-

pression in the combination of potential TFBS on a promoter. Furthermore, it is also possible

that some of this information is actually required or utilized in controlling the regulation of

gene expression in tissue-specific manner. These networks are probably an indication of the

complex regulatory machinery present in the cell(s) that takes care of the gene expression,

which is very finely tuned in terms of its function.

4.4.4 Gene Networks

In this exercise, we used the same data as discussed earlier. Only we visualized the data

on different criteria. This time we calculated number of common TFBS between each pair

of genes. It was seen that the maximum number of transcription factors shared by any

two genes was 39. In these figures, each node is name (Gene Accession Number of the

Gene Database) of a gene. The use of gene symbol was avoided to reduce ambiguity in the

visualization. The color of the node was fixed according to the prior information about the

transcriptional status of the gene in tissues. The color-coding of the nodes is as mentioned

in Figure 4.13(a). In figures 4.13 through 4.15, the networks are plotted according to the

number of TFBS shared by a pair of promoter sequences. The number in the caption denotes

the exact number of TFBS shared by two nodes in the graph for a connection between them

to be plotted. The distribution of the number of connections is nearly normal. But most

important information about tissue-specificity seems to be present in the tail region of the
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4.4.4 Gene Networks

distribution. This connectivity distribution is shown in Figure 4.16(a). It can be seen the

number of TFBS shared between a pair can range from 0 to 39. When these plots are made

using thresholds of 25 and above, an interesting picture emerges.
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(a) Legend (b) Gene network when the genes are plotted if and only if there are exactly 29 common transcription factors
between a pair of genes.

Figure 4.13: The panel a, shows the legend, the color coding used to denote genes expressed ‘specifically’ in a given tissue. b, shows the
network of genes when all the genes are taken together for analysis and only those genes are plotted which have exactly 29 transcription
factors in common.
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(a) Legend (b) Gene network 31 connections.

Figure 4.14: Gene network when the genes are plotted if and only if there are exactly 31 common transcription factors between a pair of
genes (as acquired from the TCAT database (13)).
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(a) Legend (b) Gene network 32 connections.

Figure 4.15: Gene network when the genes are plotted if and only if there are exactly 32 common transcription factors between a pair of
genes (as acquired from the TCAT database (13)).
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4.4.4 Gene Networks

It can be seen in Figure 4.13, where the graph shows the connections if and only if each

gene shares exactly 29 TFBS with another gene (in their upstream regions). Most connections

are for genes which are either expressed specifically in liver or in kidney. It is possible that

these genes are actually involved similar metabolic processes. When we actually performed

the analysis to assign these genes to specific pathways, it was discovered that most of these

promoters represent alternative forms (isoforms) of the same gene. Moreover, in some cases,

it was also seen that the promoter is specific to a alternatively spliced product of the gene(s).

This phenomenon has been described previously (23, 24). Further there is an isolated group

of two genes, which are connected to each other and are not connected to any other genes,

and both these are specific to the pancreas. This picture becomes clearer as the threshold

for plotting is increased progressively. As shown in Figure 4.16(a), the distribution of the

connectivity follows nearly Normal Distribution. To confirm this we plotted a normal q-q plot

(Quantile-Quantile Plot) for the connectivity counts. The results are shown in Figure 4.16(b).

For a perfect normal distribution this graph will coincide with the diagonal, i.e., the

theoretical quantiles are equal to the observed (sample) quantiles. However, as can be seen

from Figure 4.16(a), the connectivity histogram is slightly skewed towards the right hand side.

Furthermore, from the Figures 4.13(a) through 4.15, it is quite apparent that as the threshold

connection for plotting the graphs is increased, the patterns that show up become more and

more tissue/function specific. We can thus say that the information in the connectivity is in

the right-hand tail of the graph.

This analysis however, is only a very basic analysis. It should be noted, that at least in

the current analysis all the positional information about the TFBS has been totally ignored.

There is lot of literature now available that demonstrates that the positional information

in the TFBS distribution holds a lot of information concerning transcriptional regulation.

However, considering all this information simultaneously for analysis can make the exercise

quite unwieldy. Better methodologies will have to be developed (in addition to those described

in the literature) to be able to deal with such complicated data in a elegant manner so that

maximum information and hence knowledge can be obtained about the role of cis-regulatory

regions in the control and regulation of transcription of genes.
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4.4.4 Gene Networks

(a) Distribution of shared TFBS between each pair of
genes in the data set.

(b) The connectivity distribution follows nearly Nor-
mal Distribution.

Figure 4.16: Distribution of the number of shared transcription factor binding sites (TFBS)
across the dataset is nearly normal.
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4.5. DISCUSSION, CONCLUSIONS AND FUTURE PERSPECTIVES

4.5 Discussion, Conclusions and Future Perspectives

From the results presented in the preceding pages following interesting and important obser-

vations can be made:

• Similar transcription factors have binding sites on various promoters, implying that a

very small set of transcription factors can regulate a large number of genes.

• It is the combinations of the TFBS on the promoters that gives the promoter a distinc-

tive identity in terms of its expression. It is reasonable to believe that occurrence of a

set of TFBS on a set of promoters will probably lead to their co-expression (25, 26).

Though there are reports demonstrating that occurrence of a TFBS, or even its binding

of a TF to its cognate site does not necessarily mean that the TF affects the expression

of the gene (27, 28).

• The co-occurrence of TFBS along the promoter does vary considerably (at least visually)

as a function of tissue. However additional statistical analysis of the graphs would be

necessary to highlight the systematic differences in terms of TFBS.

• It should be noted that in all the analyses with TFBS the positional information has

not been included. The position of the TFBSs with respect to the TSS and with respect

to each other does seem to play important role in the regulation of downstream genes

(29). However, addition of this aspect into the analyses of TFBS data increases the

complexity of the analyses immensely and few more statistical analytical techniques

will have to be developed to account for such complexity. Future studies will have to

take this into consideration.

The major bottleneck in such analyses is the availability of proper input sequences or

curated promoter databases. Not many genes have been characterized in terms of their

tissue-specic expression. Also, the TFBS analysis was carried out using the MATCH program,

that contains only few TFBS weight matrices. In principle it should be possible to curate the

microarray data submitted to the GEO that is now available in the public domain to obtain

tissue-specically expressed/repressed genes. This information can be utilized to obtain their

respective promoter sequences from other well-curated databases such as the Genomatix

Promoter Database. The analyses on such sequences would lead to better insights in to
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4.5. DISCUSSION, CONCLUSIONS AND FUTURE PERSPECTIVES

understanding of the gene-regulatory networks and other cis-regulatory modules that play

important role in regulated and coordinated expression of genes.

Additionally, from the distribution of the co-occurring TFBS in the promoters (with-

out their relative or absolute positional information) it seems that presence/absence/co-

occurrence information alone may provide a basic level of understanding about general reg-

ulatory principles for gene expression. The presented results also highlight the complexity

of problem of deciphering regulatory networks from primary genomic sequence information

alone, and at the same time hint that it may, in principle, be possible to address this problem

using special statistical techniques.
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Appendix A

Motif Models (PSPM)s

A.1 Background Model MD0

Position A C G T Motif
1 0.000000 1.000000 0.000000 0.000000 C
2 0.000000 1.000000 0.000000 0.000000 C
3 0.000000 0.002381 0.000000 0.997619 T
4 0.000000 1.000000 0.000000 0.000000 C
5 0.626143 0.075790 0.191495 0.106572 A
6 0.000000 0.005125 0.994875 0.000000 G
7 0.000000 1.000000 0.000000 0.000000 C
8 0.000000 1.000000 0.000000 0.000000 C
9 0.000000 0.004610 0.000000 0.995390 T

10 0.000000 1.000000 0.000000 0.000000 C
11 0.000000 1.000000 0.000000 0.000000 C
12 0.000000 0.810820 0.000000 0.189180 C

Position A C G T Motif
1 0.538217 0.000000 0.158070 0.303713 A
2 0.000000 0.000000 1.000000 0.000000 G
3 0.000000 0.983162 0.016838 0.000000 C
4 0.010910 0.156299 0.000000 0.832791 T
5 0.000000 0.000000 0.995338 0.004662 G
6 0.004165 0.000000 0.995835 0.000000 G
7 0.000000 0.000000 1.000000 0.000000 G
8 0.661265 0.260130 0.056193 0.022412 A
9 0.092311 0.205035 0.221105 0.481549 T

10 0.005485 0.091466 0.010972 0.892077 T
11 0.672997 0.000000 0.327003 0.000000 A
12 0.000000 0.667271 0.332729 0.000000 C
13 0.683245 0.000000 0.012630 0.304125 A
14 0.000000 0.000000 1.000000 0.000000 G
15 0.000000 0.000000 1.000000 0.000000 G
16 0.000000 0.947974 0.039384 0.012641 C

Position A C G T Motif
1 0.000000 0.835510 0.164490 0.000000 C
2 0.148725 0.210882 0.000000 0.640393 T
3 0.000000 0.988865 0.003705 0.007431 C
4 0.000000 1.000000 0.000000 0.000000 C
5 0.761231 0.022866 0.000000 0.215904 G
6 0.000000 0.007707 0.978594 0.013699 G
7 0.000000 1.000000 0.000000 0.000000 C
8 0.000000 1.000000 0.000000 0.000000 C
9 0.000697 0.073898 0.000000 0.925405 T

10 0.000000 0.225980 0.735969 0.038051 G
11 0.154508 0.086047 0.743004 0.016440 G
12 0.031936 0.222319 0.716750 0.028995 G
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A.2. BACKGROUND MODEL RP0

Position A C G T Motif
1 0.991486 0.000008 0.008506 0.000000 A
2 0.585790 0.002876 0.411334 0.000000 A
3 0.979513 0.000000 0.020487 0.000000 A
4 0.007875 0.970595 0.005147 0.016383 C
5 0.007220 0.585244 0.001927 0.405608 C
6 0.000000 0.949862 0.008877 0.041261 C
7 0.007349 0.662900 0.003112 0.326638 C
8 0.350546 0.003319 0.642873 0.003262 G
9 0.004144 0.009398 0.000000 0.986459 T

10 0.003758 0.968884 0.008529 0.018829 C
11 0.001355 0.010481 0.000986 0.987178 T
12 0.003505 0.956097 0.016285 0.024113 C
13 0.401711 0.017393 0.000000 0.580896 T
14 0.980803 0.000000 0.019197 0.000000 A
15 0.413043 0.550556 0.011515 0.024886 C
16 0.471517 0.022896 0.000000 0.505587 T
17 0.949882 0.011610 0.024462 0.014046 A
18 0.974961 0.013909 0.001973 0.009158 A
19 0.970540 0.011631 0.000000 0.017830 A
20 0.955723 0.013573 0.014061 0.016642 A
21 0.961790 0.003524 0.023388 0.011298 A

Position A C G T Motif
1 0.000000 0.781620 0.000000 0.218380 C
2 0.000000 1.000000 0.000000 0.000000 C
3 0.000000 0.885937 0.000000 0.114063 C
4 0.000000 1.000000 0.000000 0.000000 C
5 0.297057 0.000000 0.000000 0.702943 T
6 0.000000 0.628568 0.295797 0.075635 C
7 0.000000 1.000000 0.000000 0.000000 C
8 0.000000 0.905960 0.000000 0.094040 C
9 0.000000 0.854798 0.000000 0.145202 C

A.2 Background Model RP0

Position A C G T Motif
1 0.956760 0.000000 0.038748 0.004491 A
2 0.020433 0.010910 0.965295 0.003361 G
3 0.002358 0.009198 0.982174 0.006270 G
4 0.000000 0.926988 0.020251 0.052761 C
5 0.101409 0.249507 0.122250 0.526834 T
6 0.052659 0.009746 0.937594 0.000000 G
7 0.955717 0.002606 0.041677 0.000000 A
8 0.002575 0.000000 0.997425 0.000000 G
9 0.003826 0.012044 0.984130 0.000000 G

10 0.017085 0.717311 0.013581 0.252024 C
11 0.504606 0.000000 0.290189 0.205204 A
12 0.016873 0.000000 0.977071 0.006056 G
13 0.012017 0.195763 0.792220 0.000000 G
14 0.692381 0.146476 0.042748 0.118395 A
15 0.050850 0.005019 0.944132 0.000000 G
16 0.391327 0.020197 0.393858 0.194618 A
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A.2. BACKGROUND MODEL RP0

Position A C G T Motif
1 0.134576 0.662374 0.060458 0.142592 C
2 0.123218 0.122109 0.744481 0.010192 G
3 0.000000 0.997638 0.000000 0.002362 C
4 0.000000 1.000000 0.000000 0.000000 C
5 0.329825 0.048401 0.000000 0.621774 T
6 0.000000 0.416692 0.583308 0.000000 G
7 0.004225 0.399189 0.000000 0.596586 T
8 0.777447 0.058230 0.152383 0.011939 A
9 0.293105 0.346473 0.308265 0.052157 C

10 0.022284 0.143941 0.282746 0.551028 T
11 0.000000 1.000000 0.000000 0.000000 C
12 0.000000 0.992444 0.000000 0.007556 C
13 0.014764 0.969957 0.000000 0.015279 C
14 0.732431 0.026301 0.196716 0.044552 A
15 0.000000 0.055422 0.944578 0.000000 G
16 0.000000 0.975360 0.019970 0.004670 C

Position A C G T Motif
1 0.000000 0.979883 0.020117 0.000000 C
2 0.000000 1.000000 0.000000 0.000000 C
3 0.610808 0.097526 0.000000 0.291666 A
4 0.000000 0.096589 0.895898 0.007513 G
5 0.000000 1.000000 0.000000 0.000000 C
6 0.000000 1.000000 0.000000 0.000000 C
7 0.034341 0.115176 0.000000 0.850483 T
8 0.000000 0.215248 0.694328 0.090424 G
9 0.124171 0.096795 0.734056 0.044978 G

10 0.000000 0.374974 0.616829 0.008196 G
11 0.000000 0.996599 0.000000 0.003401 C
12 0.424087 0.475768 0.084425 0.015720 C

Position A C G T Motif
1 0.083963 0.473281 0.275862 0.166894 C
2 0.143632 0.563570 0.107389 0.185409 C
3 0.007011 0.802949 0.043452 0.146589 C
4 0.039731 0.834651 0.000000 0.125618 C
5 0.036337 0.850051 0.000000 0.113612 C
6 0.000000 1.000000 0.000000 0.000000 C
7 0.619365 0.000000 0.005350 0.375285 A
8 0.000000 0.282603 0.689035 0.028362 G
9 0.000000 0.859319 0.133544 0.007137 C

10 0.006614 0.903846 0.000000 0.089540 C
11 0.019770 0.684773 0.000000 0.295457 C
12 0.038075 0.816854 0.042751 0.102320 C

Position A C G T Motif
1 0.043108 0.209453 0.714437 0.033003 G
2 0.007746 0.953029 0.004519 0.034707 C
3 0.000000 1.000000 0.000000 0.000000 C
4 0.607617 0.047270 0.000000 0.345114 A
5 0.000000 0.643910 0.346607 0.009482 C
6 0.046411 0.561404 0.032680 0.359504 C
7 0.499418 0.131947 0.319664 0.048970 A
8 0.199636 0.340867 0.155341 0.304156 C
9 0.168306 0.213835 0.394292 0.223567 G

10 0.002949 0.941474 0.032560 0.023017 C
11 0.000000 0.935060 0.000000 0.064940 C
12 0.050143 0.684494 0.000000 0.265362 C
13 0.398819 0.028978 0.456463 0.115740 G
14 0.004603 0.089047 0.896258 0.010092 G
15 0.000000 0.969485 0.015873 0.014642 C
16 0.075852 0.563219 0.000000 0.360929 C
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A.3. BACKGROUND MODEL RP1

A.3 Background Model RP1

Position A C G T Motif
1 0.156978 0.793977 0.043426 0.005619 C
2 0.008671 0.929793 0.029796 0.031740 C
3 0.007117 0.085103 0.051707 0.856073 T
4 0.001740 0.017467 0.980793 0.000000 G
5 0.000016 0.254045 0.000000 0.745939 T
6 0.859206 0.017192 0.123602 0.000000 A
7 0.538743 0.045410 0.415847 0.000000 A
8 0.000000 0.154498 0.089721 0.755781 T
9 0.000000 0.970673 0.029327 0.000000 C

10 0.013241 0.789515 0.031577 0.165667 C
11 0.000000 0.931472 0.058304 0.010223 C
12 0.708330 0.238420 0.049013 0.004237 A
13 0.000000 0.079339 0.920661 0.000000 G
14 0.016171 0.945671 0.028826 0.009332 C
15 0.110454 0.203732 0.062840 0.622974 T
16 0.602801 0.201507 0.032712 0.162980 A
17 0.000000 0.917636 0.000000 0.082364 C
18 0.015208 0.215879 0.038891 0.730022 T
19 0.000000 0.670937 0.025423 0.303640 C
20 0.102485 0.043202 0.854313 0.000000 G
21 0.000000 0.019824 0.974749 0.005428 G
22 0.018386 0.120467 0.861147 0.000000 G

Position A C G T Motif
1 0.121219 0.019308 0.859473 0.000000 G
2 0.033761 0.029287 0.936940 0.000012 G
3 0.000000 0.964718 0.031182 0.004100 C
4 0.012939 0.750000 0.052159 0.184902 C
5 0.144935 0.004222 0.841169 0.009674 G
6 0.371074 0.041686 0.587240 0.000000 G
7 0.014401 0.017868 0.967731 0.000000 G
8 0.012778 0.464479 0.419555 0.103189 C
9 0.129921 0.352112 0.455445 0.062521 G

10 0.119538 0.363388 0.317130 0.199944 C
11 0.097120 0.009767 0.883347 0.009767 G
12 0.013325 0.046246 0.935134 0.005296 G
13 0.076840 0.201965 0.022165 0.699031 T
14 0.028132 0.015525 0.956344 0.000000 G
15 0.051184 0.034345 0.914471 0.000000 G
16 0.363152 0.578021 0.046561 0.012265 C
17 0.038867 0.031182 0.113924 0.816026 T
18 0.009767 0.905099 0.080210 0.004925 C
19 0.759824 0.033141 0.197684 0.009352 A
20 0.001499 0.832235 0.084996 0.081270 C
21 0.070998 0.156351 0.645599 0.127052 G
22 0.159219 0.540452 0.078060 0.222269 C

Position A C G T Motif
1 0.245682 0.044876 0.709441 0.000000 G
2 0.006581 0.513269 0.480150 0.000000 C
3 0.039127 0.672293 0.266343 0.022237 C
4 0.025632 0.454533 0.363662 0.156173 C
5 0.181231 0.121741 0.605264 0.091763 G
6 0.059004 0.057949 0.870968 0.012079 G
7 0.081057 0.107133 0.811810 0.000000 G
8 0.299365 0.206370 0.403751 0.090515 G
9 0.044319 0.113206 0.713781 0.128695 G

10 0.054588 0.101078 0.811242 0.033093 G
11 0.019251 0.755647 0.210509 0.014593 C
12 0.395882 0.109358 0.372784 0.121977 A
13 0.000000 0.164978 0.835022 0.000000 G
14 0.334077 0.149541 0.375121 0.141260 A
15 0.000000 0.279508 0.706017 0.014475 G
16 0.017590 0.189427 0.792983 0.000000 G
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A.3. BACKGROUND MODEL RP1

Position A C G T Motif
1 0.336059 0.003923 0.652629 0.007389 G
2 0.045653 0.003730 0.948580 0.002037 G
3 0.000000 0.035065 0.004383 0.960552 T
4 0.000000 0.446977 0.010529 0.542495 T
5 0.000000 0.020278 0.000000 0.979722 T
6 0.001936 0.722522 0.004653 0.270889 C
7 0.569753 0.038311 0.330946 0.060990 G
8 0.003306 0.946750 0.000000 0.049944 C
9 0.010406 0.510910 0.011433 0.467251 C

10 0.524648 0.309704 0.134524 0.031124 A
11 0.016941 0.024034 0.004399 0.954626 T
12 0.050942 0.018782 0.911436 0.018840 G
13 0.000000 0.007758 0.004428 0.987815 T
14 0.006979 0.245679 0.000000 0.747342 T
15 0.270492 0.018157 0.678078 0.033273 G
16 0.004827 0.469124 0.496049 0.030000 G
17 0.000000 0.847539 0.006337 0.146124 C
18 0.000000 0.959209 0.007556 0.033235 C
19 0.956304 0.000000 0.027916 0.015779 A
20 0.015397 0.004383 0.978182 0.002037 G
21 0.034164 0.022917 0.936710 0.006209 G
22 0.180232 0.787318 0.013022 0.019427 C
23 0.000000 0.040227 0.000000 0.959773 T
24 0.042764 0.008119 0.942187 0.006930 G
25 0.000013 0.000000 0.999974 0.000013 G
26 0.328967 0.007933 0.017695 0.645405 T
27 0.012581 0.638755 0.314497 0.034167 C
28 0.007790 0.009691 0.019227 0.963292 T

Position A C G T Motif
1 0.000000 0.907979 0.000000 0.092021 C
2 0.001585 0.907406 0.057061 0.033948 C
3 0.000000 0.970637 0.006611 0.022752 C
4 0.987074 0.000000 0.012926 0.000000 A
5 0.931514 0.000000 0.068486 0.000000 A
6 0.885805 0.000000 0.056662 0.057533 A
7 0.046868 0.000000 0.870483 0.082648 G
8 0.122994 0.000000 0.000013 0.876993 T
9 0.005200 0.000000 0.994800 0.000000 G

10 0.000000 0.945169 0.000000 0.054831 C
11 0.000000 0.051722 0.000000 0.948278 T
12 0.033016 0.000000 0.966984 0.000000 G
13 0.091449 0.000000 0.908551 0.000000 G
14 0.006446 0.000000 0.993554 0.000000 G
15 1.000000 0.000000 0.000000 0.000000 A
16 0.000000 0.022535 0.000000 0.977465 T
17 0.000000 0.040432 0.000000 0.959568 T
18 0.968414 0.000000 0.031586 0.000000 A
19 0.000000 0.954135 0.000000 0.045865 C
20 0.959353 0.000000 0.040647 0.000000 A
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A.4. BACKGROUND MODEL RP2

A.4 Background Model RP2

Position A C G T Motif
1 0.572993 0.017593 0.385036 0.024377 A
2 0.000000 0.028938 0.971062 0.000000 G
3 0.000000 0.995838 0.000000 0.004162 C
4 0.000000 0.555045 0.034125 0.410830 C
5 0.004018 0.000000 0.995982 0.000000 G
6 0.090452 0.020575 0.888973 0.000000 G
7 0.000000 0.009914 0.990086 0.000000 G
8 0.376954 0.493545 0.107307 0.022194 C
9 0.070960 0.350834 0.458898 0.119308 G

10 0.000000 0.260462 0.152208 0.587329 T
11 0.360225 0.000000 0.639775 0.000000 G
12 0.000000 0.353070 0.646930 0.000000 G
13 0.351323 0.122254 0.029918 0.496506 T
14 0.000000 0.013317 0.986683 0.000000 G
15 0.009914 0.025614 0.964473 0.000000 G
16 0.084737 0.854905 0.020587 0.039772 C

Position A C G T Motif
1 0.308050 0.040959 0.650991 0.000000 G
2 0.000000 0.978039 0.018982 0.002979 C
3 0.000000 0.997112 0.000000 0.002888 C
4 0.000000 0.024924 0.082608 0.892468 T
5 0.000000 1.000000 0.000000 0.000000 C
6 0.339560 0.244659 0.415781 0.000000 G
7 0.030291 0.009660 0.951475 0.008573 G
8 0.000000 0.973254 0.007057 0.019690 C
9 0.000000 0.980680 0.019320 0.000000 C

10 0.009660 0.060427 0.023866 0.906047 T
11 0.000000 0.998141 0.001859 0.000000 C
12 0.000000 0.963864 0.036136 0.000000 C

Position A C G T Motif
1 0.022966 0.875024 0.006539 0.095471 C
2 0.858856 0.005398 0.116924 0.018822 A
3 0.022699 0.013569 0.957822 0.005910 G
4 0.097844 0.022961 0.003161 0.876033 T
5 0.027193 0.013184 0.856609 0.103013 G
6 0.884742 0.097844 0.015841 0.001574 A
7 0.096016 0.012703 0.886716 0.004565 G
8 0.005169 0.971876 0.007280 0.015675 C
9 0.048866 0.662537 0.034937 0.253659 C

10 0.190327 0.032107 0.693363 0.084203 G
11 0.830593 0.016044 0.110137 0.043227 A
12 0.106215 0.000000 0.889497 0.004288 G
13 0.867845 0.006829 0.113747 0.011579 A
14 0.000000 0.049069 0.080547 0.870384 T
15 0.034129 0.584028 0.058499 0.323344 G
16 0.248256 0.142873 0.604223 0.004649 G
17 0.091362 0.491902 0.062734 0.354002 C
18 0.231468 0.000000 0.749474 0.019058 G
19 0.022717 0.862811 0.098698 0.015773 C
20 0.097844 0.886738 0.005512 0.009905 C
21 0.896594 0.000000 0.103406 0.000000 A
22 0.005715 0.730844 0.022141 0.241301 C
23 0.004459 0.006288 0.016240 0.973013 T
24 0.019077 0.103420 0.864403 0.013100 G
25 0.026160 0.842432 0.090363 0.041046 C
26 0.938148 0.025311 0.036541 0.000000 A
27 0.013924 0.831515 0.119369 0.035192 C
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A.5. BACKGROUND MODEL RP3

Position A C G T Motif
1 0.000000 0.985879 0.000000 0.014121 C
2 0.000000 0.999989 0.000000 0.000011 C
3 0.000000 0.006759 0.000000 0.993241 T
4 0.013931 0.000000 0.986069 0.000000 G
5 0.000000 0.000000 0.000000 1.000000 T
6 0.998463 0.001537 0.000000 0.000000 A
7 0.906616 0.000000 0.093384 0.000000 A
8 0.000000 0.000000 0.000000 1.000000 T
9 0.000000 0.988383 0.000000 0.011617 C

10 0.000000 0.982760 0.000017 0.017223 C
11 0.000000 0.976962 0.000000 0.023038 C
12 1.000000 0.000000 0.000000 0.000000 A
13 0.049510 0.000000 0.950490 0.000000 G
14 0.010073 0.987024 0.000000 0.002903 C

Position A C G T Motif
1 0.011467 0.033108 0.069412 0.886014 T
2 0.000000 0.432088 0.049632 0.518280 T
3 0.000000 0.916697 0.045097 0.038207 C
4 0.108322 0.053825 0.135185 0.702667 T
5 0.000000 0.943416 0.045412 0.011173 C
6 0.000000 0.924988 0.075012 0.000000 C
7 0.000000 0.313816 0.041480 0.644704 T
8 0.177608 0.030241 0.769560 0.022592 G
9 0.000000 0.974892 0.007349 0.017758 C

10 0.007446 0.948263 0.023583 0.020707 C
11 0.000016 0.094381 0.016651 0.888951 T
12 0.010061 0.782371 0.042751 0.164816 C
13 0.693130 0.052868 0.240901 0.013101 A
14 0.020995 0.045018 0.928577 0.005410 G
15 0.016200 0.929810 0.016651 0.037340 C
16 0.006826 0.945990 0.005410 0.041774 C
17 0.018332 0.052446 0.036772 0.892450 T
18 0.000000 0.966075 0.032079 0.001846 C
19 0.001544 0.951735 0.040664 0.006057 C
20 0.010061 0.730761 0.034493 0.224685 C
21 0.399777 0.093309 0.506914 0.000000 G

A.5 Background Model RP3

Position A C G T Motif
1 0.287091 0.024854 0.688055 0.000000 G
2 0.000000 0.987043 0.009904 0.003054 C
3 0.000000 0.997039 0.000000 0.002961 C
4 0.078033 0.013127 0.064792 0.844048 T
5 0.000000 1.000000 0.000000 0.000000 C
6 0.251898 0.296326 0.451776 0.000000 G
7 0.039855 0.009904 0.941452 0.008789 G
8 0.000000 0.981472 0.000000 0.018528 C
9 0.000000 0.894133 0.105867 0.000000 C

10 0.000000 0.140236 0.005325 0.854439 T
11 0.000000 1.000000 0.000000 0.000000 C
12 0.000000 0.995283 0.004717 0.000000 C
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A.5. BACKGROUND MODEL RP3

Position A C G T Motif
1 0.005096 0.712649 0.010836 0.271419 C
2 0.720253 0.008809 0.262198 0.008740 A
3 0.039639 0.005768 0.940599 0.013993 T
4 0.011739 0.917821 0.000000 0.070440 C
5 0.006753 0.915173 0.000000 0.078073 C
6 0.026904 0.014782 0.000000 0.958314 T
7 0.000000 0.923335 0.024811 0.051854 C
8 0.000013 0.938834 0.013933 0.047220 C
9 0.024899 0.799722 0.000000 0.175379 C

10 0.645698 0.013898 0.336065 0.004338 A
11 0.957413 0.005888 0.022850 0.013849 A
12 0.447738 0.000000 0.544998 0.007264 G
13 0.044533 0.016754 0.400489 0.538223 T
14 0.546965 0.000000 0.025918 0.427117 A
15 0.015499 0.000000 0.978802 0.005699 G
16 0.003894 0.929753 0.015582 0.050770 C
17 0.008058 0.004315 0.000000 0.987627 T
18 0.078901 0.003149 0.917949 0.000000 G
19 0.062283 0.003840 0.933878 0.000000 G
20 0.020689 0.000000 0.961745 0.017566 G
21 0.984796 0.000000 0.015204 0.000000 A
22 0.008549 0.299411 0.000000 0.692040 T
23 0.012159 0.034318 0.008444 0.945078 T

Position A C G T Motif
1 0.012807 0.007857 0.975980 0.003356 G
2 0.000017 0.987575 0.000000 0.012408 C
3 0.012988 0.662972 0.011845 0.312195 C
4 0.194078 0.004687 0.790496 0.010739 G
5 0.028077 0.010382 0.956495 0.005047 G
6 0.008697 0.002055 0.989248 0.000000 G
7 0.000000 0.746058 0.005410 0.248532 C
8 0.294431 0.013047 0.676331 0.016191 G
9 0.005307 0.416010 0.005722 0.572961 T

10 0.155264 0.000000 0.837515 0.007221 G
11 0.020427 0.009314 0.964380 0.005879 G
12 0.000000 0.009739 0.000013 0.990247 T
13 0.013253 0.015870 0.963624 0.007253 G
14 0.027985 0.005510 0.966505 0.000000 G
15 0.000000 0.906610 0.006218 0.087172 C
16 0.093842 0.009889 0.258559 0.637711 T
17 0.000000 0.806979 0.166626 0.026396 C
18 0.743620 0.008202 0.243626 0.004551 A
19 0.005405 0.780326 0.005922 0.208346 C
20 0.185993 0.008545 0.799246 0.006215 G
21 0.000000 0.978220 0.000000 0.021780 C
22 0.006218 0.973098 0.002877 0.017807 C

Position A C G T Motif
1 0.036156 0.015529 0.948315 0.000000 G
2 0.000000 0.145917 0.854083 0.000000 G
3 0.008861 0.862658 0.128481 0.000000 C
4 0.027214 0.193539 0.103785 0.675461 T
5 0.090530 0.092333 0.804090 0.013046 G
6 0.008861 0.027367 0.958663 0.005109 G
7 0.674785 0.099744 0.225471 0.000000 A
8 0.037122 0.043516 0.902308 0.017054 G
9 0.013626 0.095422 0.230692 0.660260 T

10 0.000000 0.060961 0.932467 0.006572 G
11 0.000000 0.939978 0.060022 0.000000 C
12 0.767684 0.046656 0.149667 0.035993 A
13 0.031912 0.045376 0.922713 0.000000 G
14 0.045622 0.137564 0.098419 0.718396 T
15 0.000000 0.039706 0.960294 0.000000 G
16 0.000000 0.099942 0.900058 0.000000 G
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A.6. BACKGROUND MODEL RP4

Position A C G T Motif
1 0.019956 0.298579 0.094057 0.587408 T
2 0.026085 0.176936 0.770947 0.026031 G
3 0.000000 0.889173 0.100581 0.010246 C
4 0.734363 0.038882 0.205969 0.020786 A
5 0.002546 0.076869 0.920585 0.000000 G
6 0.000000 0.089997 0.270488 0.639516 T
7 0.151827 0.054364 0.786355 0.007453 G
8 0.732572 0.070640 0.193057 0.003731 A
9 0.000000 0.098900 0.901100 0.000000 G

10 0.000000 0.943653 0.046740 0.009607 C
11 0.074367 0.625355 0.175947 0.124331 C
12 0.012313 0.082441 0.901515 0.003731 G
13 0.770585 0.077322 0.138744 0.013349 A
14 0.000000 0.066827 0.933173 0.000000 G
15 0.622265 0.196854 0.180881 0.000000 A

A.6 Background Model RP4

Position A C G T Motif
1 0.000828 0.002429 0.000000 0.996742 T
2 0.995576 0.000000 0.004424 0.000000 A
3 0.752685 0.000000 0.247315 0.000000 A
4 0.000000 0.015740 0.000000 0.984260 T
5 0.000000 0.982372 0.000000 0.017628 C
6 0.005474 0.965777 0.002057 0.026692 C
7 0.000000 0.954792 0.000000 0.045208 C
8 0.996629 0.003371 0.000000 0.000000 A
9 0.043484 0.000000 0.956516 0.000000 G

10 0.011313 0.985933 0.000000 0.002755 C
11 0.527679 0.005799 0.001781 0.464741 A
12 0.468610 0.498316 0.012102 0.020972 C
13 0.002816 0.457560 0.000000 0.539623 C
14 0.005371 0.021875 0.003154 0.969599 T
15 0.007817 0.311173 0.004554 0.676456 T
16 0.144888 0.010437 0.838853 0.005823 G
17 0.017943 0.005473 0.976585 0.000000 G
18 0.017494 0.000000 0.979633 0.002872 G
19 0.985612 0.000000 0.005483 0.008905 A
20 0.030264 0.000000 0.968896 0.000840 G
21 0.022613 0.002606 0.969791 0.004990 G

Position A C G T Motif
1 0.960802 0.007024 0.030265 0.001909 A
2 0.017543 0.003670 0.877931 0.100855 G
3 0.007113 0.959854 0.010846 0.022186 C
4 0.000000 0.980605 0.007432 0.011963 C
5 0.000000 0.008166 0.004174 0.987660 T
6 0.025545 0.000000 0.974455 0.000000 G
7 0.070825 0.000000 0.929175 0.000000 G
8 0.038036 0.401267 0.555934 0.004764 G
9 0.010936 0.748175 0.007962 0.232927 C

10 0.720423 0.003915 0.271637 0.004025 A
11 0.993694 0.000000 0.003527 0.002778 A
12 0.023268 0.920100 0.011550 0.045082 C
13 0.970430 0.000000 0.025402 0.004168 A
14 0.030411 0.098860 0.387982 0.482748 T
15 0.557795 0.009943 0.432262 0.000000 A
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A.6. BACKGROUND MODEL RP4

Position A C G T Motif
1 0.030423 0.011233 0.955102 0.003243 G
2 0.034530 0.028803 0.924780 0.011887 G
3 0.007378 0.776840 0.010119 0.205664 C
4 0.286450 0.032298 0.667924 0.013328 G
5 0.011904 0.290005 0.027426 0.670665 T
6 0.052350 0.186973 0.759078 0.001599 G
7 0.529294 0.300409 0.010812 0.159485 A
8 0.151779 0.005645 0.842577 0.000000 G
9 0.003241 0.949591 0.016759 0.030409 C

10 0.011343 0.934512 0.018687 0.035458 C
11 0.950533 0.016041 0.027983 0.005443 A
12 0.011754 0.952061 0.007924 0.028262 C
13 0.020213 0.823766 0.024859 0.131162 C
14 0.601109 0.012342 0.377544 0.009005 A
15 0.018804 0.642256 0.019936 0.319004 C
16 0.234938 0.011692 0.735469 0.017901 G
17 0.013282 0.938961 0.018420 0.029337 C
18 0.002632 0.962397 0.005414 0.029557 C
19 0.009900 0.705337 0.002444 0.282318 C
20 0.295975 0.011272 0.669207 0.023546 G
21 0.008873 0.032897 0.958221 0.000009 G
22 0.001750 0.970638 0.008283 0.019329 C

Position A C G T Motif
1 0.677115 0.131234 0.179535 0.012116 A
2 0.039485 0.004046 0.948961 0.007509 G
3 0.006985 0.439391 0.007243 0.546380 T
4 0.129433 0.074904 0.791894 0.003769 G
5 0.989529 0.000000 0.010471 0.000000 A
6 0.003392 0.000000 0.004378 0.992230 T
7 0.000000 0.503778 0.003877 0.492345 C
8 0.002933 0.880463 0.001685 0.114920 C
9 0.155506 0.002458 0.197369 0.644667 T

10 0.000000 0.956848 0.000000 0.043152 C
11 0.018924 0.939690 0.010350 0.031036 C
12 0.008103 0.330401 0.004440 0.657056 T
13 0.177815 0.003218 0.812178 0.006789 G
14 0.000000 0.971608 0.000000 0.028392 C
15 0.000000 0.938261 0.002752 0.058987 C
16 0.000000 0.007988 0.000000 0.992012 T
17 0.007347 0.829892 0.000000 0.162762 C
18 0.680928 0.013164 0.300293 0.005614 A
19 0.020718 0.002148 0.970385 0.006748 G

Position A C G T Motif
1 0.025361 0.153313 0.817431 0.003894 G
2 0.475092 0.185955 0.338953 0.000000 A
3 0.012003 0.097133 0.883142 0.007722 G
4 0.029908 0.196145 0.766916 0.007031 G
5 0.043853 0.263081 0.171016 0.522050 T
6 0.068529 0.155415 0.226835 0.549221 T
7 0.006335 0.070078 0.886439 0.037148 G
8 0.011107 0.740555 0.230528 0.017810 C
9 0.520921 0.136555 0.277988 0.064536 A

10 0.005366 0.103835 0.888396 0.002403 G
11 0.053359 0.153281 0.204922 0.588438 T
12 0.049875 0.095418 0.845782 0.008925 G
13 0.535672 0.162624 0.276384 0.025320 A
14 0.011117 0.178872 0.791017 0.018994 G
15 0.005398 0.654970 0.305050 0.034583 C
16 0.035354 0.612596 0.275142 0.076908 C
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A.7. BACKGROUND MODEL RP5

A.7 Background Model RP5

Position A C G T Motif
1 0.055601 0.155916 0.782787 0.005697 G
2 0.103912 0.176250 0.661378 0.058460 G
3 0.167330 0.078553 0.680378 0.073739 G
4 0.051724 0.420761 0.486218 0.041297 G
5 0.187726 0.430834 0.184187 0.197253 C
6 0.083142 0.386706 0.386997 0.143155 G
7 0.072507 0.250546 0.437964 0.238983 G
8 0.037420 0.387271 0.557392 0.017917 G
9 0.392914 0.044820 0.301004 0.261261 A

10 0.000000 0.014891 0.959713 0.025396 G
11 0.067696 0.335044 0.493426 0.103833 G
12 0.274286 0.142959 0.467612 0.115143 G
13 0.121941 0.218586 0.534948 0.124525 C
14 0.085659 0.418857 0.382169 0.113315 C
15 0.161425 0.249052 0.402988 0.186535 G
16 0.080070 0.203254 0.657647 0.059029 G
17 0.199123 0.299415 0.368774 0.132688 G
18 0.117246 0.232955 0.531639 0.118160 G
19 0.111376 0.306282 0.524737 0.057606 C
20 0.179823 0.404250 0.337061 0.078866 C
21 0.145939 0.229589 0.563749 0.060724 G
22 0.016568 0.177489 0.799681 0.006263 G

Position A C G T Motif
1 0.000000 0.972270 0.000006 0.027724 C
2 0.000000 0.971512 0.009030 0.019458 C
3 0.002293 0.835617 0.003131 0.158959 C
4 0.677355 0.005432 0.316211 0.001002 A
5 0.984370 0.000000 0.008223 0.007407 A
6 0.529848 0.000000 0.465285 0.004867 A
7 0.024789 0.011171 0.479947 0.484093 T
8 0.474273 0.003379 0.012305 0.510042 T
9 0.008508 0.000009 0.979140 0.012343 G

10 0.000000 0.947402 0.004695 0.047903 C
11 0.000000 0.000000 0.003366 0.996634 T
12 0.048125 0.000000 0.951875 0.000000 G
13 0.018970 0.000000 0.981030 0.000000 G
14 0.024200 0.002285 0.973515 0.000000 G
15 0.982280 0.000000 0.017720 0.000000 A
16 0.000000 0.273880 0.000000 0.726120 T
17 0.001841 0.011139 0.000000 0.987020 T
18 0.992897 0.000000 0.006276 0.000827 A
19 0.000000 0.964274 0.000000 0.035726 C
20 0.988124 0.000000 0.008024 0.003852 A
21 0.023484 0.004859 0.971657 0.000000 G

Position A C G T Motif
1 0.002605 0.008180 0.004181 0.985034 T
2 0.023564 0.002401 0.974035 0.000000 G
3 0.074349 0.004176 0.921475 0.000000 G
4 0.040738 0.391965 0.561479 0.005817 G
5 0.010954 0.744643 0.012720 0.231683 C
6 0.720841 0.003921 0.271206 0.004032 A
7 0.993263 0.000000 0.006737 0.000000 A
8 0.023308 0.915071 0.011668 0.049953 C
9 0.975304 0.000000 0.020520 0.004175 A

10 0.030462 0.099028 0.395519 0.474992 T
11 0.568042 0.009960 0.421998 0.000000 A
12 0.033727 0.000000 0.962735 0.003537 G
13 0.016670 0.394209 0.031269 0.557853 T
14 0.266143 0.013260 0.718930 0.001667 G
15 0.986403 0.000008 0.012067 0.001523 A
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Position A C G T Motif
1 0.632687 0.163196 0.184570 0.019547 A
2 0.054894 0.000000 0.937812 0.007294 G
3 0.006701 0.402063 0.006819 0.584416 T
4 0.122443 0.055733 0.818162 0.003661 G
5 0.992067 0.004691 0.003243 0.000000 A
6 0.003302 0.000000 0.000000 0.996698 T
7 0.000000 0.551979 0.002218 0.445803 C
8 0.005987 0.872480 0.001636 0.119897 C
9 0.183624 0.002387 0.209571 0.604417 T

10 0.000000 0.941305 0.006270 0.052425 C
11 0.022681 0.946192 0.008210 0.022918 C
12 0.007872 0.384937 0.002325 0.604866 T
13 0.218279 0.000000 0.770633 0.011088 G
14 0.000000 0.977677 0.000000 0.022323 C
15 0.000000 0.924878 0.004540 0.070582 C
16 0.000000 0.000000 0.000000 1.000000 T
17 0.005410 0.810218 0.000000 0.184372 C
18 0.647291 0.009884 0.338060 0.004765 A
19 0.032350 0.000000 0.964707 0.002943 G
20 0.012953 0.953996 0.000000 0.033051 C
21 0.002873 0.963929 0.000000 0.033198 C
22 0.002151 0.000000 0.000000 0.997849 T

Position A C G T Motif
1 0.056248 0.000000 0.921436 0.022317 G
2 0.038581 0.039886 0.882061 0.039473 G
3 0.000820 0.947179 0.022924 0.029077 C
4 0.016780 0.041811 0.010774 0.930636 T
5 0.111712 0.031982 0.842801 0.013504 G
6 0.034844 0.034553 0.899223 0.031380 G
7 0.945800 0.019007 0.026057 0.009136 A
8 0.060149 0.015258 0.910559 0.014034 G
9 0.025013 0.056499 0.051835 0.866653 T

10 0.120218 0.028903 0.783522 0.067357 G
11 0.015438 0.902570 0.024828 0.057164 C
12 0.953771 0.020292 0.014977 0.010960 A
13 0.194685 0.019836 0.769854 0.015624 G
14 0.004430 0.039486 0.000000 0.956083 T
15 0.034171 0.011702 0.954126 0.000000 G
16 0.056345 0.030962 0.886958 0.025735 G
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Appendix B

Deciding the Order of the
Background Model for Motif
Detection

B.1 Introduction

The analysis presented in Chapter 3 naturally leads to the following question: How should
one choose the order of the Markov model that represents the background for motif detection?
An intuitively appealing and simple solution to this problem is as follows: Use the lowest
of orders for which artificial (random) sequences generated from the corresponding Markov
model cannot be distinguished, by any means whatsoever, from the original genomic sequences
that were used to build the model.

Distinguishability can be established by only one methodology that is able to distinguish
between the two sets of sequences. Conversely, indistinguishability needs to be established
with reference to all conceivable methodologies that could, in principle, distinguish between
the two sets of sequences. Establishing indistinguishability of two sets of sequences thus
appears to be a theoretical impossibility. We circumvent this problem through the follow-
ing approximate and somewhat ad hoc prescription: establish indistinguishability using one
methodology that is able to distinguish between the two sets of sequences with fair success
at low enough orders.

In the rest of this chapter, we outline one such methodology together with preliminary
empirical results on how it behaves across model orders, and show how it may be harnessed
to decide the order of the background model for motif detection. Our methodology, in a
nutshell, is as follows: attempt to distinguish between the two sets of sequences (original
vs. model-generated) using an agnostic hierarchical clustering method (such as agnes; to
be explained shortly) coupled with a compression-based distance measure on strings (to
be explained shortly). Recognizing that we have a known number of groups in the data,
namely two (original vs. model-generated), we show that such clustering can be turned into
a classification scheme. Further, using standard statistical measures, we assess the quality
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of clustering and classification as a function of the model order. The results presented here
clearly indicate that this is a promising direction that needs extensive investigation.

B.2 Materials and Methods

We downloaded 50 sets of sequences from the human genome using the Random Sequence

Grabber each with 100 sequences of length 10000 bases. This is discussed in detail in Chap-
ter 3, page 99. (see page 100 for details), Markov models of orders 0 through 6 were built
(using GenRGenS) from another independent set consisting of 1000 sequences of 10000 bases
each. Using GenRGenS, we generated 50 sets (of identical specifications as the downloaded
sets) of artificial (random) sequences from each order of the Markov model. For each order
of the Markov model, we thus have a total of 2500 combinations of the 50 downloaded sets
and 50 artificial sets.

Hierarchical clustering was performed on each of these 2500 combinations. To avoid any
bias arising from a predetermined ordering of the sequences in each set, we used a fresh
random permutation of the 200 sequences (100 downloaded + 100 artificial) in each set.
Clustering statistics were generated for each of these 2500 clusterings for each order. Cluster
analysis was performed in the R statistical computing environment using the cluster and fpc

packages. The distance measure used for clustering is the so-called normalized compression
distance (NCD). We also devised a classification scheme based on clustering. The rest of this
section provides details of the key ingredients of our cluster analysis.

B.2.1 Model-Generated Synthetic Sequences

For the sake of completeness, we describe here how random artificial DNA sequences can be
generated using a Markov model of order k. Actual artificial sequences used in our analysis
were generated using the tool GenRGenS.

Markov models have been discussed in detail in Chapter 3. To recapitulate, an order-
0 Markov model specifies the probabilities pA, pC , pG, pT of occurrence of the four DNA
letters A, C, G, T (see Figure B.1 for an example). To generate an artificial random se-
quence consisting of these letters in the given proportion, one needs a source of randomness.
In the computational domain, such sources are called (pseudo)random number generators
(RNG). The process of choosing the next letter in an artificial sequence randomly, with pre-
specified probabilities, is illustrated in Figure B.1. In essence, one needs to construct four
events (corresponding to the four DNA letters) that occur with the prespecified probabilities
pA, pC , pG, pT .

The same method can be extended to generate random artificial DNA sequences from
a higher-order Markov model. For each k-mer, a k-th order Markov model specifies the
conditional probabilities of the four DNA letters to follow that k-mer. Thus, one could
start with an arbitrarily chosen k-mer, and an artificial DNA sequence can be generated by
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Figure B.1: Random Generation of Artificial Sequences Using an Order-0 Markov
Model: Given a (pseudo)random number generator that generates random numbers between
0 and 1 with uniform probability density (flat solid line in the figure), a sequence of letters
A,C,G,T with pre-specified probabilities pA, pC , pG, pT can be generated by the construction
illustrated above: Generate one random number 0 ≤ r < 1; if 0 ≤ r ≤ pA, emit letter A; else
if pA ≤ r ≤ pA + pC , emit letter C; else if pA + pC ≤ r ≤ pA + pC + pG, emit letter G; else
emit letter T. Actual values of pA, pC , pG, pT used in the figure above are the same as those
in Figure 3.1 (page 88).

generating the next letter by looking at the conditional probabilities of the four DNA letters
for the last k-mer in the sequence generated, in exactly the same fashion as above.

B.2.2 Compression-Based Distance Measures for Strings

The normalized compression distance (NCD) between two strings x and y is defined as

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
, (B.1)

where C(x) is the compressed size of x, xy stands for the concatenation of x followed by y,
and min (max) stands for the minimum (maximum) of its arguments. The NCD has its root
in the notion of Kolmogorov complexity (1) of a string, which is, qualitatively, the length of
the shortest possible representation of the string. Strings with periodic, repeating patterns
are thus examples of low complexity, whereas a string with no apparent pattern possessed a
high complexity. While Kolmogorov complexity is uncomputable in principle, it is possible
to estimate it using practical compressors such as LZ77 or LZ78 (2). We note in passing that
several other similar distance measures, such as Chen-Li metric (CLM), compression-based
dissimilarity measure (CDM), and compression-based cosine (CosS) have been reported in
the literature (3, and references therein).

Clustering based on the NCD has been successfully used for a variety of problems such as
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the classification of languages (4), authorship attribution (1), musicology (2), phylogenomics
(2), classification of prokayotes (5), etc.. To cite Cilibrasi & Vitańyi (2):

Clustering according to NCD will group sequences together that are similar according to

features that are explicitly known to us. Analysis of what the compressor actually does, still

may not tell us which features that make to us can be expressed by conglomerates of features

analyzed by the compressor. This can be exploited to track unknown features implicitly in

classification: forming automatically clusters of data and see in which cluster (if any) a new

candidate is placed.

The versatility of the NCD perhaps originates in the fact that the algorithmic complexity
theory (6) is a deep subject that may have implications everywhere: In essence, algorithmic
complexity is closely related to the nature of correlations in a string of objects, and practical
compressors attempt to recognize and represent these correlations in some (indirect) manner.

A distance measure d(x, y) is expected to possess certain properties, namely,

1. d(x, y) > 0 for x 6= y (distance between dissimilar objects is expected to be positive),

2. d(x, x) = 0 (distance between identical objects should be zero),

3. d(x, y) = d(y, x) (symmetry), and

4. d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

Formal analysis of the NCD with reference to these properties can be found in (2). Note that
with practical compressors such as gzip or bzip2 (7), properties 2–4 may not always hold
true. It is important that properties 2 and 3 hold if NCD is to be coupled with a hierarchical
clustering algorithm. We thus use a slightly altered form of the NCD, which we call the
symmetrized NCD (SNCD), which is manifestly symmetric and is zero for identical strings.
The SNCD is defined as

SNCD(x, y) =
1
2

[NCD(x, y) + NCD(y, x)]− 1
2

[NCD(x, x) + NCD(y, y)] (B.2)

We used a home-brewn tool based on the gzip compression library zlib (7) to calculate SNCD
for each pair of sequences in a given FASTA file and output in the form of a matrix (often
referred to as the dissimilarity matrix).

B.2.3 Hierarchical Clustering

We used a hierarchical clustering method called agglomerative nesting. In R, this method is
available as the function agnes() (8) (package cluster) that can take a dissimilarity matrix
(in our case, the SNCDmatrix) as input. The way agnes works is as follows; we quote from
the R manual (9) page for agnes:

The agnes-algorithm constructs a hierarchy of clusterings. At first, each observation is a

small cluster by itself. Clusters are merged until only one large cluster remains which contains
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all the observations. At each stage the two “nearest” clusters are combined to form one larger

cluster.

In addition, we used Ward’s criterion (10) for clustering with agnes. To quote (10):

The Ward method is often successfully used for solving clustering problems over dissimilarity

matrices which do not consist of squared Euclidean distances between units.

In passing, we note here that we also attempted clustering via multiple sequence alignment
using clustalw (11). This tool was able to distinguish biological sequences from artificial
sequences generated from an order-0 Markov model. All clusterings of biological sequences
with artificial sequences generated from higher-order Markov models had no clear cluster
structure.

B.2.4 Statistical Measures for Quality of Clustering

Clustering results need to be assessed for their quality and stability. This is typically done by
looking at the values of a variety of statistical measures. Some of the most common measures
of clustering stability are described below; for a detailed explanation, see, e.g., (8).

Agglomerative coefficient (AC) is a dimensionless quantity that varies between 0 and 1.
AC close to 1 indicates that a very clear cluster structure has been found in the data,
whereas AC close to 0 indicates that the method has not found any natural structure
in the data (in other words, the algorithm sees the data as one big cluster).

Average Silhouette Width (ASW). Values of the ASW close to +1 indicate a clear and
correct clustering of the data. Values close to zero imply overlapping clusters without
clear boundaries, and negative values indicate incorrect cluster assignments.

Hubert Γ. This statistic (12) measures the stability of the clustering using the instances
that are clustered. Higher the value of Hubert’s Γ, better the clustering.

Dunn Index (DI) (13) is the ratio of minimum separation between clusters to the maximum
diameter across clusters. Large values of this index indicate better clustering.

Average Cluster Distances. Good cluster structure corresponds to a small average within-
cluster distance (AWCD) and a large average between-clusters distance (ABCD). The
ratio of these two quantities, called the W-B ratio (WBR), is a more useful quantity as
it brings out the contrast in the cluster structure: Cleaner the clustering structure in
the data, smaller the WBR.

These measures of quality and stability of clustering were computed (using the function
cluster.stats() in the R package fpc) for each of the 2500 data combinations (see Sec-
tion B.2) for each Markov model order. This enabled us to get a feel for the variability in our
cluster analysis and, specifically, the dispersion of these measures of quality and stability. We
estimated the dispersion of a quantity using three different estimators, namely, the standard

174



B.2.5 From Clustering to Classification

deviation/error (SD), the the median average deviation (MAD), and the interquantile range
(IQR). The standard deviation is a standard measure of dispersion, but it is sensitive to the
presence of outliers. MAD and IQR, on the other hand, are relatively robust measures of
dispersion that are not affected by outliers very much. We expect that the three measures
taken together give a representative picture of the true dispersion of a quantity.

In order to understand and interprete the values of these measures, we performed cluster
analysis on artificial distance matrices with a known cluster structure, and tunable contrast
between the within-group and between-groups distances. This contrast level was chosen
to match the approximate contrast level in typical SNCD distance matrices for a set of 100
biological sequences and 100 artificial sequences generated from the order-0 model.

B.2.5 From Clustering to Classification

So far, we have ignored the fact that we expect two clear groups in our sequence data, namely,
the group consisting of biological sequences (labelled P) picked from random locations in the
human genome, and the group consisting of artificial random sequences generated from a
Markov model (labelled G). Using this information is especially important because the SNCD

distance matrices turn out to have a low contrast between the two groups of sequences. In this
light, the quality of clustering could be assessed better through the following post-clustering
treatment:

1. Construct two equal-sized groups of the clustered sequences. If clustering is perfect, we
expect all the Ps to be in one group, and all the Gs in the other.

2. Assign to each group the label (P or G) of the sequence type that is most dominant in
that group.

3. This is, in essence, a binary classification scheme. Assess the quality of such classifica-
tion by calculating the Matthew correlation coefficient (MCC) (14), which is explained
below.

The MCC is defined as

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (B.3)

where TP, TN,FP, FN respectively stand for the numbers of type-P sequences clustered
with group P, type-G sequences clustered with group G, type-G sequences clustered with
group P, and type-P sequences clustered with group G. In our case, by construction, we have
TP = TN and FP = FN . Equation B.3 thus reduces to the form

MCC =
TP − FP
TP + FP

. (B.4)

MCC takes values between +1 and −1, with +1 implying a perfect classification, 0 implying
a random assignment of group labels, and −1 meaning perfect anti-classification. We expect
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(a) (b)

(c) (d)

Figure B.2: Cluster Statistics I. See text for details.

the MCC to be a better measure of clustering quality in the present context, especially when
the SNCD is able to discriminate between the genomic sequences and generated sequences only
weakly.

B.3 Results and Discussion

B.3.1 Clustering

Figure B.3.1 shows a representative dendrogram at order 0. We see that the P (marked blue)
and the G (marked orange) sequences fall into correct groups, indicating that it is indeed
possible to obtain clean and correct clustering for order 0 using the SNCD distance measure. In
fact, such clean clustering was obtained for all the 2500 sequence set combinations for order 0.
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(a) (b)

(c) (d)

Figure B.3: Cluster Statistics II. See text for details.
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(a) (b)

(c) (d)

(e) (f)

Figure B.4: Cluster Statistics III. See text for details.
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Picked Vs. Order−0

G
Ptype

Figure B.5: Clustering Dendrogram: Showing the clustering of the genomic sequences
and Markov order-0 generated sequences using the agnes with Ward. The orange labels
denote the picked sequences and the blue labels show the artificial random sequences. The
agnes with Ward is able to cluster the sequences nearly completely.

As a general rule, clustering quality deteriorates with increasing order of the Markov model.
Figures B.2–B.4 show the distribution of a number of measures of clustering quality (see

Section B.2.4 for details) in the form of boxplots (left-hand panels), together with their
dispersions (right-hand panels) as estimated through the IQR (dashed line with a ‘+’), the
SD (dotted line with a ‘∗’), and the MAD (solid line with open circles ‘◦’), as functions of
the order of the Markov model.

The order-0 results are important for understanding our clustering results as a whole.
Specifically, while we see a clean and correct clustering at order 0 in the dendrogram (Fig-
ure B.3.1), we also notice that clustering quality indicators are not in their respective ranges
that are normally taken to imply a good clustering. For instance, we would have liked to see
the AC to be close to 1; what we get for order 0 is rather small, around 0.4. Similarly, a
value of ASW close to 1 would have been considered the indicator of good clustering; what
we observe is a median value of around 0.01.

Understanding and Interpreting These Results. How does one understand and rec-
oncile these two apparently contradictory facts, i.e., a clean and correct clustering at order
0 leading to a rather small value of the AC or the ASW? We find a clue in the values of
the within-between ratio (Figure B.4(e)): values of the WBR close to 1 indicate a weak con-
trast of about 1% between the average within-cluster distances and average between-clusters
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(a) The distance matrix with known low-contrast.
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(b) Dendrogram for the distance matrix in (a).

Measure Value
AC 0.088

WBR 0.990
Hubert Γ 1.000

DI 1.010
AWS 0.010

(c) Measures of clustering quaility
for clustering of distance matrix (a)
and clustering in (b).

Figure B.6: Behaviour of agnes with low contrast data I. Note that the clustering is clean
but the measures of quality of clustering indicate poor clustering (see text for details).
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0.964 0.990 0.975 1.026 1.060 0.989 0.962 0.982 1.010 0.998 0.937 0.977 1.081 0.983 0.944 1.073 1.026 0.000 1.022 0.995
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(a) The distance matrix with known low-contrast in B.6(a) but smeared with noise.
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(b) Dendrogram for the distance matrix in (a).

Measure Value
AC 0.24

WBR 0.82
Hubert Γ 0.28

DI 0.86
AWS 0.03

(c) Measures of clustering quaility
for clustering of distance matrix (a)
and clustering in (b).

Figure B.7: Behaviour of agnes with low contrast data, the distance matrix is smeared with
noise II. Note that the clustering is not clean, it is worst than seen in Figure B.6, but the
measures of clustering quality indicate it is better than seen in Figure B.6(see text for details).
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(a) Distance matrix generated using Uniform(0.995,1.005).
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(b) Dendrogram for the distance matrix in (a).

Measure Value
AC 0.01

WBR 0.99
Hubert Γ 0.21

DI 0.99
AWS 0.0009

(c) Measures of clustering quaility
for clustering of distance matrix (a)
and clustering in (b).

Figure B.8: Behaviour of agnes with low contrast data III. We expect no clustering in this
case as all the sequences are generated randomly. (see text for details).
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B.3.2 Classification

distances.
What appears to be happening is that the SNCD is indeed able to distinguish between the

P sequences and the G sequences at order 0 (this would explain the clean clustering as seen
in the dendrogram B.3.1), but with a rather weak contrast (this would explain why clustering
quality indicators are not so clean). To verify this, we performed clustering exercises on the
following artificial dissimilarity matrices:

1. Dissimilarity matrices with a known small contrast between two groups of equal size
(100 each). An example of such artificial dissimilarity matrix (of a smaller size) is shown
in Figure B.6. Here, all within-group distances are set equal to 1, whereas all distances
between members of one group to members of the other are set to 1.01. This contrast
level of 1% is chosen to match the approximate contrast level in the SNCD dissimilarity
matrices at order 0. This contrast level corresponds to a WBR of 1/1.01 ≈ 0.990099.

The results of this exercise with smaller artificial dissimilarity matrices are shown in
Figure B.6. We indeed see that clean and correct clustering can be obtained (using
agnes with Ward) even in a low-contrast situation. The corresponding quality indica-
tors indeed indicate a poor clustering because of the low inter-group contrast.

Specifically, when the same exercise is done for two groups of size 100 each (dendrogram
not shown), the AC turns out to be approximately 0.42, which is close to the median
AC value of 0.43 that we see in our sequence clustering exercise at order 0.

2. The same dissimilarity matrix “smeared” with multiplicative random Uniform(0.9,1.1)1

noise. This exercise is expected to give us a feel for how the clustering quality deterio-
rates with noise.

We see in Figure B.7 that the underlying low-contrast cluster structure can still be
discerned in presence of noise at this level. Although some data instances do get wrongly
assigned to the opposite group, most data, by and large, gets correctly clustered. The
value of AC, although smaller than in the unsmeared case, is still comparable.

We see the same behavior/trend for two groups of size 100 each (AC ≈ 0.38).

3. For the sake of completeness, we also performed clustering with an artificial dissimilarity
matrix that consisted of Uniform(0.995,1.005) noise alone; we expect to see only one
group in the data, and the value of AC is very close to 0, as expected (See Figure B.8).

We again see the same behavior/trend for two groups of size 100 each (AC ≈ 0.03).

We thus conclude that the quality of agnes/Ward clustering in a low-contrast situation may
very well be good even if the standard measures of clustering quality indicate otherwise.

B.3.2 Classification

In arriving at the above conclusion, we have made use of additional information that we expect
two equal-sized groups in the sequence data. With this additional information, the quality

1Uniform(a,b) stands for the uniform distribution over the interval a to b.
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B.3.3 Summary and Conclusions

(a) Matthews Correlation Coefficient See
text for details.

(b) The spread in the values of MCC in terms
of measures of statistical dispersion.

Figure B.9: The panel on the left-hand side denotes boxplot for a given cluster statistic as
plotted over 2500 clusterings, each panel on the right-hand side denotes the spread for the
respective boxplots in terms of 3 measures of statistical dispersion, dashed line with ‘+’ mark
denotes the IQR (interquantile range), the dotted line with ‘*’ denotes the standard deviation
and the line with open circles ‘◦’ denotes the MAD (median average deviation).

of such binary clustering can be assessed in a better fashion, especially in a low-contrast
situation, via the Matthew correlation coefficient defined in Section B.2.5. The behavior of
the MCC as a function of the order of the Markov model is displayed in Figure B.9. We see
that the value of the MCC for order 0 reflects the near-perfect classification into P and G
groups. As expected, classification accuracy deteriorates at higher orders as model-generated
sequences start resembling genomic sequences better. Interestingly, while the median value
of the MCC (see Figure B.9(a)) does not decrease drastically with order, the dispersion (see
Figure B.9(b)) of the MCC increases dramatically.

This behavior suggests that the order of the background model in a motif detection
exercise can be decided on the basis of the dispersion of the MCC. Our prescription for the
background model order is thus as follows: choose the lowest order with dispersion of MCC
larger than a prespecified threshold.

B.3.3 Summary and Conclusions

The focus of this work was to arrive at a prescription for deciding the order the background
model for motif detection. Given that an appropriate background has been identified in
the context of the motif detection problem, an intuitively appealing and simple prescription
is as follows: Use the lowest of orders for which artificial (random) sequences generated
from the corresponding Markov model cannot be distinguished, by any means whatsoever,
from the background genomic sequences that were used to build the model. To establish
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B.3.3 Summary and Conclusions

indistinguishability, we suggested the use of SNCD-based agnostic clustering of background
genomic sequences and artificial model-generated sequences. Through an extensive clustering
exercise, we established that the SNCD distance measure coupled with agnes+Ward clustering
is able to distinguish systematically between the two sets of sequences unambiguously at order
0, even if the contrast between within-group and between-groups distances is rather low, of
the order of 1%. Based on an analysis of these results, we devised a classification scheme
that captures the quality of clustering correctly through the Matthew correlation coefficient.

Our complete prescription for determining the order of the background model for motif
detection is as follows:

1. Identify the correct background based on the problem at hand. Collect M + 1 sets of
N of (genomic) sequences of length L each from this background.

2. Build Markov models of orders 0, 1, 2, . . . using one of these sets of sequences.

3. For each such model, generate M sets of N artificial random sequences of length L

each.

4. For each of the M2 combinations (of M remaining genomic sets with M artificial sets),
compute the SNCD dissimilarity matrix. Cluster each combination using agnes with
Ward.

5. Calculate the MCC for each of the resulting clusterings (see Section B.2.5), and compute
some measure of the spread of its distribution.

6. Using some reasonable threshold on the spread of MCC, choose the lowest order for
which the spread of MCC is above this threshold. This is the prescribed order of the
Markov model representing the background in a motif detection exercise.

We note in passing that any better distance measure could be substituted for SNCD, and any
better clustering method could be substituted for agnes with Ward; however, the behavior
of such a combination needs to be thoroughly investigated prior to use.
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Appendix C

Other Data

This part of the thesis is provided as a DVD inside the
last page cover fold of the thesis. On that DVD there
is a README file that describes the data available in the
DVD. The folders are arranged chapter-wise (as they
appear in the thesis) and all the relevant information is
clubbed together in various folders.
If there are problems in reading the DVD or ac-
cessing the DVD, all the data in the thesis is avail-
able on request. Kindly direct your request to
sameet@cms.unipune.ernet.in.
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